Ecuaciones funcionales lineales para funciones analíticas en el bicírculo. Uniformización, automorfismos. Análisis del caso con cuádrica.

  • Danilo Gortaire Játiva Universidad Central del Ecuador, Carrera de Matemáticas
  • Zverovich Edmund Ivanovich Universidad Estatal de Bielorrusia, Facultad de Matemáticas y Mecánica


Inicialmente, el artículo presenta una breve síntesis sobre ciertos tipos de ecuaciones funcionales lineales de ℂ2 en el bicírculo y su esquema de búsqueda de la solución. Luego tenemos un estudio detallado de cierta ecuación funcional lineal tipo con núcleo


Kingman J.F.C. Two similar queues in parallel. Ann. Math. Statist., 32 (1961) 1314-1323

Fayolle G. On functional equations of one and two complex variables arising i the analysis of stochastics
models, In: Math. Computer Performance and Reliability, eds. Iazeola G., Courtois P. J. and Holdijk A., p. 55-
75, North-Holland Publ. Co., Amsterdan, 1984

Flatto L., McKean H. P. Two queues in parallel. Comm. Pure & Appl. Math, 30 (1977) 255-263

Mujelishvili N. I. Singular integral equations. Moscow, Ed. Fis.- Mat., 1962 (in russian).

Malyshev V. A. “Random walks. The Wiener-Hopf equations in quadrant of the plane. Galois automorphisms.
Moscow State University Press. 1970.

Malyshev V. A. Wiener and Hopf equations and their uses in probability theory. Resultados científicos (Itogi
Nauki), 1976, t. 13, págs. 5-35 (in russian).

Cohen J., Boxma O. Boundary value problems in queueing system analysis. Moscow, Ed. Mir, 1987 (in

Rogosin S. V. Some questions of analytic functions applications in the queueing theory. Fakultät für
Mathematik der Ruhr-Universität. Preprint Nr. 165 / XI-1992. Bochum, 1992

Zverovich E. I. On a certain functional equation in the theory of random walks and equations of Wiener and
Hopf in a quadrant. Thesis of the international conference of mathematics dedicated to the 100 years of the birth
of S. Banach. Lvov, 1992 (in russian).

Zverovich E. I., Krushevskii E. A. Implicit solution of some particular cases of the two-dimensional discrete equation of Wiener and Hopf in a quadrant. Modern problems of mathematical physics. Works of Soviet symposium, t. 2, Ed. of the Tbilisi University, 1987, págs. 33-39 (in russian).

Krushevskii E. A. Linear equations for analytical functions in the bicircle and applications. Thesis of doctor candidate in mathematics, University of Belarus, Minsk, 1992 (in russian).

Zverovich E. I. On the possibility of constructing a global uniformization of an algebraic correspondence,
University of Belarus Journal, serie I: Physics, Mathematics, Mechanics, 1998, N° 2, pags. 57- 60 (in russian)

Nevanlinna R. Uniformización. Moscú, Ed. Literatura Extranjera, 1965 (in russian)

Ford L.R. Automorphic functions. Moscow, ONTI, 1936 (in russian).

Shabat, B. V. Introduction to Complex Analysis, T. I, II. Moscow, Nauka, 1985 (in russian).

Courant R., Hurwitz A. Theory of functions. Moscow, Nauka, 1968 (in russian).

Gajov F. D. Boundary problems. Moscow, Nauka, 1977 (in russian).

Zigmund A. Trigonometric Series, T. I, II. Moscow, Ed. Mir, 1965 (in russian).

Zverovich E. I. Boundary problems of analytical functions in Holder classes on Riemann surfaces. Uspieji Matematicheskij Hayk, t. XXVI, N° I (157), 1971, Págs. 113-179 (in russian).

Gortaire Danilo. Investigation of functional equations for analytical functions in the bicírcle with the method
of uniformization and applications. Thesis of doctor candidate in mathematics, University of Belarus, Minsk, 1994
(in russian).