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Abstract This work considers an assortment optimization problem, under capacity
constraint and unknown demand, where a retailer offers an assortment and observes
the sale of one of the products according to a multinomial logit choice model. In
this problem, named as the dynamic assortment optimization problem (DAOP), the
retailer must offer different assortments in each period to learn the customer pref-
erences. Therefore, the trade-off between exploration of new assortments and the
exploitation of the best known assortment must be balanced. Similarities between
sampling and exploration are established in order to apply the cross-entropy method
as a policy for the solution of the DAOP. The cross-entropy method finds a proba-
bility distribution that samples an optimal solution by minimizing the cross-entropy
between a target probability distribution and an arbitrarily selected probability dis-
tribution. This requires the DAOP to be formulated as a knapsack problem with
a penalty for offering assortments that exceed capacity. The results are compared
with adaptive exploration algorithms and, experimentally, the cross-entropy method
shows competitive results. These results suggest that the cross-entropy method can
be used to solve other sequential decision-making problems.
Keywords cross-entropy method, dynamic assortment optimization, multinomial
logit choice model.

Resumen Este trabajo considera un problema de optimización de surtido, bajo re-
stricción de capacidad y demanda desconocida, donde un vendedor ofrece un surtido
y observa la venta de un producto según un modelo de elección logit multinomial.
En este problema, llamado como el problema de optimización dinámica de surtido
(PODS), el vendedor debe ofrecer diferentes surtidos en cada perı́odo para aprender
las preferencias del consumidor. Por lo tanto, el trade-off entre la exploración de
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nuevos surtidos y la explotación del mejor surtido conocido debe ser equilibrado.
Se estableció similitudes entre el muestreo y la exploración con el fin de aplicar el
método de entropı́a cruzada como polı́tica para la solución del PODS. El método
de entropı́a cruzada encuentra una distribución de probabilidad que muestrea una
solución óptima al minimizar la entropı́a cruzada entre una distribución de prob-
abilidad objetivo y una distribución de probabilidad seleccionada arbitrariamente.
Esto requiere que el PODS se formule como un problema de la mochila con una
penalización por ofrecer surtidos que superan la capacidad. Los resultados se com-
paran con algoritmos de exploración adaptativa y, experimentalmente, el método de
entropı́a cruzada muestra resultados competitivos. Estos resultados sugieren que el
método de entropı́a cruzada se puede utilizar para resolver otros problemas de toma
de decisiones secuenciales.
Palabras Claves método de entropı́a cruzada, modelo de elección logit multino-
mial, optimización dinámica de surtido

1 Introduction

1.1 Overview of the problem

In revenue management, it is studied the problem of finding an assortment of prod-
ucts, that when offered to a customer it maximizes revenue. Usually, companies
have constraints that do not allow to display all existing products in the assortment.
It is also known that customer preferences and the relationship between products
generally influence the assortment revenue, therefore it is important to determine
the assortment that meets capacity constraints and maximizes revenue.

If the customer preferences are known and these does not change over time,
then the problem centers on finding the optimal assortment that should be offered
throughout the selling season. This problem is called the Static Assortment Op-
timization Problem. When the customer preferences are unknown, then the seller
must estimate them by sequentially offering assortments of products in the sell-
ing season. This problem is called the Dynamic Assortment Optimization Problem
(DAOP) (Caro & Gallien, 2007; Sauré & Zeevi, 2013) and it is detailed in sec-
tion 2.2. This situation is more common and has applications in retail, e-commerce,
pricing and online advertising (Rusmevichientong, Shen, & Shmoys, 2010; Kök &
Marshall, 2007; Slivkins, 2019). Since customer preferences are unknown, it is not
expected to determine the optimal assortment at the beginning of the selling season
but to offer assortments to explore their revenue and learn about customer prefer-
ences. Thus, in this setting is desirable to maximize the expected cumulative revenue
in the selling season. In section 2.3 is shown that the maximization of the expected
cumulative revenue is equivalent to minimizing the expected cumulative regret.
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1.2 Contribution

The main contribution of this work is to apply the cross-entropy method, commonly
used for optimization, to a sequential decision-making problem such as the DAOP.
In general, optimization methods are not used for sequential decision-making prob-
lems due to a number of reasons. The main reason is that optimization methods ex-
pect that the outcome (usually a real number) of a decision to be deterministic and
the decision-outcome relationship to be known. Unlike optimization problems, in
sequential decision-making problems, the outcomes of the decisions are stochastic
and the decision-maker is unaware of the decision-outcome probability distribution.
For this reason, the decision maker must explore between decisions so as to learn the
decision-outcome relationship. In optimization problems, the cross-entropy method
“learns” a probability distribution, which generates an optimal solution, by sampling
and minimizing the cross-entropy. This work establishes a parallelism between ex-
ploration and sampling and it is shown that the cross entropy method can be used in
the DAOP.

2 Background

2.1 Stochastic Multiarmed Bandit

There are certain problems in which sequential decisions must be made to optimize
over time, that is, decisions must take into account not only today but also the un-
certainties of tomorrow. In addition, the decision maker has no knowledge of the
relationship between decision and outcome. In other words, this type of problem is
to optimize in the face of uncertainty. In particular, consider a situation where a de-
cision maker faces a series of actions, each one with a random reward. Each action
is independent of time and other actions. The distribution of rewards are unknown
and the decision maker can adaptively learn a policy by taking different actions and
observing the rewards. Thus, the decision maker must manage the trade-off of ex-
ploring different actions, in order to learn, versus exploiting an action that currently
seem the best.

The Stochastic Multiarmed Bandit (MAB) is a model that captures the exploration-
exploitation trade-off of the above problem. The name comes from the parallelism
between the situation where a gambler must chose between arms in a slot machine
and the situation where one must make an action in order to maximize reward. In
the MAB problem the decision maker, in each round t ∈ {1, ...,T}, must chose
one of the arms (or actions). Let It ∈ {1, ...,S} denote the arm pulled at the tth
timestep. Pulling the arm It = i at timestep t gives a random reward rt ∈ R. The
reward is observed immediately after choosing the arm and is randomly distributed
with mean µi, where i ∈ {1, ...,S}. Thus, E[rt |It = i] = µi. Consequently, one must
decide which arm to choose at each timestep in order to maximize the expected



4 José Manuel Vera Aray

cumulative rewards at timestep T based only in the observed outcomes by pulling
arms (Agrawal, 2019).

2.2 Dynamic Assortment Optimization Problem

Given a set of products N, let S = {S ⊆ N : |S| ≤ K} be the set of potential as-
sortments. A seller at each timestep t offers an assortment St ∈ S and observes a
customer purchase ct ∈ St ∪{0}. The 0 element means “no-purchase decision”. Ini-
tially, is unknown the customer preferences of the products. Each time an assortment
is offered, a purchase decision is observed that gives information about the utility of
the purchased product. The seller wants to find the assortment that gives the high-
est revenue. The dynamically selection of assortments can be modelled as an MAB
problem. In this context, we have an MAB where each arm is an assortment of K
products. Thus, every time the seller pulls an arm, he offers an assortment to the
customers. The feedback of the pulled arm represents the revenue due to the offered
assortment.

The expected revenue depends on the relationship of the subset of products that
make up the assortment and that the seller does not know. This relationship is the
substitution that products experience due to customers preferences. This substitu-
tion effect influence the expected demand of each product in the assortment. The
Multinomial Logit (MNL) choice model is used to model this effect. This choice
model is commonly used and is well studied in the literature (Agrawal, Avadhanula,
Goyal, & Zeevi, 2019, 2017; Rusmevichientong & Topaloglu, 2012; Wang, Chen,
& Zhou, 2018). Under the MNL choice model, the probability of choosing a product
i (c = i), assuming a utility of 0 to the “no-purchase decision”, on the assortment s
is:

P(c = i|S = s) =

{
eµi

1+∑ j∈s eµ j if i ∈ s,

0 otherwise,
(1)

where µi is the mean utility of product i.
Since the customer can only buy one unit of any product from the assortment,

then the expected revenue of an assortment S ∈ S is:

R(S,µµµ) = ∑
i∈S

ri · eµi

1+∑ j∈S eµ j
, (2)

where µµµ = {µ1, ...,µN} is the mean utility vector and ri is the revenue of product
i.
If there are N products and each assortment is made up of K products, there is a ex-
ponential number of assortments that can be offered. We cannot explore indefinitely
as this will possibly lead to many low-revenue assortments being offered. At each
timestep the decision maker faces the dilemma of keep exploring new assortments
or exploit the best assortment seen so far. The longer the exploration period, the
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greater the probability of finding a near-optimal assortment but with a high cumu-
lative regret. Conversely, if the exploration period is short, the cumulative revenue
is expected to be lower at the beginning but at the end of the selling season it could
end up being higher. This raises the following question, how long should we explore
before we settle? This is the exploration versus exploitation trade-off. This trade-off
and also the fact of making decision over time under uncertainty differentiates the
DAOP from other optimization problem.

2.3 Regret

Because we are interested in maximizing the cumulative revenue as we explore new
assortments, we want to find a “good” assortment in the fewest number of offerings.
This is equivalent to minimizing losses due to “bad” assortments. In other words,
maximizing the cumulative revenue is equivalent to minimizing the cumulative re-
gret. The regret is the loss of revenue for offering a suboptimal assortment. Since
the revenues are not deterministic, we want to minimize the expected cumulative
regret. The expected cumulative regret of an algorithm π with a time horizon T is
defined as,

Regπ(T,µµµ) =
T

∑
t=1

[
R(S∗,µµµ)−Eπ [R(St ,µµµ)]

]
, (3)

where S∗ = argmaxS∈SR(S,µµµ).
The expected cumulative regret measures the performance of an algorithm on

an MAB problem (Lattimore & Szepesvári, 2020) and as shown in section 2.2, the
DAOP is an instance of an MAB.

3 Methodology

In this section, is detailed the Cross-Entropy Method for the DAOP. First, in section
3.1 the relationship of the DAOP with the knapsack problem is identified. Then,
section 3.2 describes the associated stochastic problem of the knapsack problem.
Finally, in section 3.4 the cross-entropy method for the associated stochastic prob-
lem is detailed.

3.1 Knapsack Problem

The Dynamic Assortment Optimization Problem (DAOP) is formulated as a Knap-
sack problem. The Knapsack problem is a combinatorial optimization problem
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were, under capacity constraints, one must find the combination of elements that
maximizes some objective function. In the DAOP context, the elements are the prod-
ucts and the constraint is the size of the assortment.

Following the formulation in (Botev, Kroese, Rubinstein, & L’Ecuyer, 2013),
each product j have an associate revenue r j and must be selected which product
will be in the assortment of size K in order to maximize the revenue. The integer
programming formulation is

max
x

S(x) =
n

∑
j=1

r j · x j

subject to
n

∑
j=1

x j ≤ K

x j ∈ {0,1},

(4)

where x j are the binary decision variables; x j = 1 if the product j is in the assortment
and x j = 0 otherwise. By adding a penalty to the objective function is defined (4) as
a single function, as follows,

S(x) .
=

n

∑
j=1

r j · x j−β · I{∑ j x j>K}, (5)

where β is a penalty value in case that the constraint in (4) is not satisfied. In
the context of the DAOP, β is a penalty for having more than K products in the
assortment.

3.1.1 Penalty on the objective function of the DAOP

It is assumed that the dynamic assortment optimization is done in a e-commerce
environment. Given the flexibility of e-commerce, the online retailer may offer an
assortment of size greater than K. In this situation, offering many products generates
a high inventory maintenance cost but almost no display cost. Thus, the assortment
size is considered as a soft constraint. Following this idea, the function (5) allows to
explore assortments larger than K but at a higher cost.

3.2 Associated Stochastic Problem

The formulation (4) is only concerned with finding a vector x∗ that maximizes S(x).
From this formulation can be derived an associated stochastic problem (ASP). In
this associated problem it is estimated the maximum value γ∗ and the parameters u
of a probability density function that generates a random vector X with concentrated
probability density. In particular, instead of finding the vector x∗ we find the maxi-
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mum value γ∗ and the parameters u that generates, with high probability, a random
vector X such that S(X)≥ γ∗.

In general, lets define the maximum γ∗ as:

γ
∗ = max

X∈X
S(X), (6)

where X is the set of all possible vectors X. Then, the ASP is defined as,

l(γ) = Pu(S(X)≥ γ) = EuI{S(X)≥γ}, (7)

where X is distributed according probability density function (pdf) f (· ; u) with pa-
rameters u and I is the indicator function. Equation (7) defines the estimation of the
parameters that maximizes the probability of the event S(X) ≥ γ . In particular, the
CE method maximizes γ and estimates the parameters u of the pdf that generates a
random vector X that maximizes l(γ).

x is a binary vector in the knapsack problem formulation. Thus, it is assume that
X is distributed as a multivariate Bernoulli distribution and its pdf is

f (X;u) =
n

∏
j=1

u
x j
j · (1−u j)

1−x j , (8)

3.3 Cross-Entropy Method

The Cross-Entropy (CE) method was first introduced as an approach for the estima-
tion of rare-event probabilities but since then it has been applied to many problems
such as reinforcement learning and optimization (Botev et al., 2013). In the case of
optimization problems, the method minimizes the cross-entropy or Kullback-Leibler
divergence to estimate a vector sampling distribution with probability mass concen-
trated in a region of near-optimal vectors. The method starts with a specified random
mechanism that, through sampling and observing the outcomes of the samples in
some function, allows updating the parameters of this same mechanism (Rubinstein
& Kroese, 2004). This allows to generate better samples and converge to the optimal
parameters. In the context of the ASP, the CE method iteratively updates γ and u, in
order to find a γ ′ close to γ∗ and the values of parameters u′ that maximizes (7). In
the following section is detailed the CE method for the ASP.

3.4 CE method for the ASP

Given equations (5) and (8) the steps for the CE method are:
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1. Initialize parameters û0 of pdf f , the number of samples per iteration N, quantile
q, smoothing parameter α and set t = 1.

2. Generate x1, ...,xN ∼iid f (· ; ut−1). Calculate S(xi) for all i and sorted them from
smallest to largest: S1 ≤ ...≤ SN .

3. Update γ̂: Let γ̂t = SN−Nq+1, where Nq = dqNe
4. Update û: Let each element of ût as

ũt, j =
∑

N
k=1 I{S(xk)≥γ̂t} · xk, j

∑
N
k=1 I{S(xk)≥γ̂t}

, (9)

ût = α · ũt +(1−α) · ût−1. (10)

5. If stop criteria is met STOP; otherwise t = t +1 and go to Step 2

4 Experiments

The experimental setups proposed in (Agrawal et al., 2019) were carried out using
the CE method and the algorithms presented in (Agrawal et al., 2019) and (Sauré
& Zeevi, 2013), then the results were compared. The performance metric was the
cumulative regret.

In addition to comparing the method with the other algorithms, the following was
analyzed:

1. The relation between separation of assortments and convergence rate to optimal
assortment.

2. The relation between number of potential products N and expected cumulative
regret.

4.1 Experiment 1

This experiment measures the robustness of an algorithm to different separability
parameters ε . The greater ε , the more separation there is between the optimal as-
sortment and the rest of assortments. Thus, the smaller the separability parameter,
the more difficult it is to distinguish the optimal assortment. There are N = 10 prod-
ucts and must be found the optimal assortment of K = 4 products. The revenues are
r j = 1 for all j ∈ {1, ...,10}. The utility parameters are v0 = 1 and for j = 1, ...,10,

v j =

{
0.25+ ε if j ∈ {1,2,9,10},
0.25 else,

(11)

where v j = eµ j . The utility defined in (11) is used to calculate the expected revenue.
The experiment was performed with the separability parameter ε = {0.05,0.1,0.15,0.25}
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and with a time horizon of 1x106 timesteps. The penalty (β ) of offering unfeasible
assortments (assortments with more than K products) was established as 10% of the
sum of the revenues of all products and the smoothing parameter α = 0.8. The ex-
periment was carried out 100 times and the mean cumulative regret for each of the
algorithms is presented in Fig. 1.

4.2 Experiment 2

The second experiment used the “UCI Car Evaluation Database” (Dua & Graff,
2019). This dataset consists of consumer ratings of N = 1,728 cars. Following the
setup specified in (Agrawal et al., 2019), the utility of the cars according to its at-
tributes were estimated through Logistic Regression. Like experiment 1, it is as-
sumed that ri = 1 for i = 1, ...,N. The time horizon was 1x107 timesteps. Given the
unknown utility of each car we must find the optimal assortment of K = 100 cars.

Here it is defined the objective function S(x) as,

S(x) =


K

∑
n
i=1 xi
· ∑

n
i=1 ri·xi·eµi

1+∑
n
i=1 xi·eµi if ∑

n
i=1 xi > K,

∑
n
i=1 ri·xi·eµi

1+∑
n
i=1 xi·eµi else.

(12)

The objective function (12) indicates that the cost of an assortment larger than K
will have a proportional reduction according to its size. Larger the size, greater the
reduction of the revenue of the assortment.

4.3 Experiment 3

To analyze the convergence rate of the CE method for problems of different sizes,
experiment 1 was carried out with different numbers of products N and different
sizes of assortment K. Table 1 shows the different setups of the experiment.

Table 1 Setups for Experiment 3

N K
30 6
50 10
80 16
100 20

Source: Own Creation
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5 Numerical Results

Fig. 1 shows the results of experiment 1. The CE method performed better than
the two others algorithms and this was reflected in a lower cumulative regret at
timestep T . On early timesteps, the CE method had worse cumulative regret, but it
learned the optimal assortment fast enough to produce zero regret in the remaining
timesteps. Furthermore, this result shows that the CE method is influenced by the
separation. The higher the separability parameter, the less cumulative regret the al-
gorithm produces. On the other hand, the number of timesteps needed to find the
optimal assortment is not so sensitive of the separation of assortments.

In Fig. 2 is shown that the CE method found the optimal assortment in a small
fraction of the time horizon but generated a higher cumulative regret in compari-
son with Agrawal’s algorithm. Given that Sauré’s algorithm presents a linear regret
rate, it will increase as the time horizon increases. The same can be deduced with
Agrawal’s algorithm, since it does not have a zero regret rate either. In contrast, the
CE method has zero regret rate after less than 10% of the time horizon so a greater
time horizon will not increase its cumulative regret.

Overall, the results of experiments 1 and 2 (Fig. 1 and Fig. 2) display faster
convergence of the CE method to the optimal assortment than the other methods but
it had higher regret rate in early timesteps.
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Fig. 1 Cumulative regret of the CE method and the compared algorithms for different values of
separability parameter ε in Experiment 1

Source: Own Creation
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Fig. 2 Cumulative regret of the CE method and the compared algorithms in Experiment 2
Source: Own Creation

The results of experiment 3 showed that in all instances, even in very challenging
settings like N = 100, the CE method arrived to the optimal assortment in less than
the 10% of time horizon. Moreover, Fig. 3 shows that separability does not affect
the convergence rate. The scale of the problem have more significance rather the
separability of the assortments.

6 Discussion

Depending on how the penalty for offering unfeasible assortments is defined, the CE
method can produce higher or lower cumulative regrets. Since the CE method finds
the optimal assortment fast enough, one might wonder if this is more beneficial than
lower cumulative regret, e.g., taking too long to find a satisfactory solution in situa-
tions where the customers preferences change over time would lead to a worse per-
formance overall. Experimentally, the CE method showed a O

(√
|S|T log(|S|T )

)
cumulative regret upper bound on the DAOP instances. Although experimentally the
CE method has a comparable performance to that of known adaptive exploration al-
gorithms (Agrawal et al., 2019, 2017; Sauré & Zeevi, 2013; Slivkins, 2019), the
upper and lower regret bounds of the CE method that allow theoretical comparison
with other algorithms were not derived. As an extension to this work, it would be
important to derive the regret bounds of the CE method on the DAOP.
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Fig. 3 Cumulative regret of the CE method for different assortment sizes N in Experiment 3
Source: Own Creation

7 Conclusions

The CE method was successfully applied to the DAOP and obtained competitive
results. The results imply that when the time horizon is large, the CE method may
even perform better than the compared algorithms. This suggests the potential use
of the CE method on other sequential decision-making problems. The CE Method
arrived to the optimal assortment during the selling horizon unlike the compared
algorithms. The exploration phase of the CE method depends on the number of
products N, but regardless of the number it is relatively short compared to the time
horizon. In contrast, the compared algorithms did not find the optimal assortment
and the cumulative regret could increase with the time horizon T .

A disadvantage of the CE method is that it starts exploring unfeasible assort-
ments and therefore incurs in penalties. The experiments showed that the regret rate
is extremely high in early timesteps but only during a relative short period com-
pared to the time horizon. After this short period, the CE method found the optimal
assortment and had a zero regret for the rest of the timesteps.
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