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AN INFINITE-SERIES REPRESENTATION FOR FUNCTIONS IN
DIFFERENTIABILITY CLASS C*

Abad Andrés G.'

Resumen. La representacion de funciones por medio de series al infinito encuentra aplicaciones en diferentes campos de las matematicas y
de la ingenieria. La mds comun de estas representaciones es la serie de potencias. En este trabajo se presenta una novedosa representacion
de funciones continuamente diferenciables mediante series al infinito y se estudia su convergencia. Adicionalmente, presentamos algunas
aplicaciones, incluyendo una forma de representar a la funcion gamma por medio de series al infinito.
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Abstract. Infinite-series representations find applications in many mathematical and engineering domains. The most common infinite-series
representation is the power series. In this paper, we present a novel infinite-series representation of smooth functions and study its

convergence. Additionally, we present applications, including an infinite-series representation of the gamma function.
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1. INTRODUCTION

Infinite-Series representation of functions find
applications in many mathematical and engineering
domains. For example, they are used in numerically
computation of the wvalues of functions or in
estimating their behavior. Additionally, infinite-
series representations are used in solving systems of
differential equations.

The most common infinite-series representation of a
function f(x) is the power-series representation of
the form
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for some values of ¢;’s, and a. It remains to find the
values of x for which this representation is valid. It

can be shown that if f{(x) has a power series
® ;
L@ here FO(x) is

il
the i*" derivative of f(x). This representation is
known as the Taylor series representation.

In this work, we propose a novel infinite-series
representation for smooth functions and we study its
convergence. It should be pointed out that the
proposed series representation is, thus, not a power
series. For the best of the author’s knowledge, this
infinite-series representation is presented here for
the first time.
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The rest of the paper is structured as follows. In
Section IT we present the main two theorems of this
work. Section III provides illustrations of the
proposed infinite-series representation and some of
their applications. Finally, Section IV closes the
paper providing the conclusions.

2. INFINITE-SERIES REPRESENTATION

A function f(x) is said to be of class Ck if the
derivatives f @ (x), f® (x), ..., f¥)(x) exists and
are continuous. Note that the continuity of the &
derivatives is automatic except for f®) . The
function f (x) is said to be of class C™ or smooth it
has derivatives of all orders. Furthermore, if f(x)
has derivative of all orders within the open interval
(a,b) we say that f(x) is smooth in (a,b) and
write (x) € C*(a,b) .

We now present the main results of this paper.
Theorem 1: Let f(x) be a function of class
C™*1(a,b) and integrable in (a,b), then, there
exists & in (a, b) such that
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where f©(x) = f(x).
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Proof:
Define
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and
i+1
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so that we can define

R,(») =FQy) =S, ().
Differentiating R, (y) with respect to y we have

RP(y) = FO(y) —sP(y)

thus
5<1)(y)— [( D) f(‘)(y) +( 0% f(l+1)(y)(1++;ll)'
so that
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On the other hand, by the Fundamental Theorem of
Calculus (see [1]) we have

FO@) = f).

Thus
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By the First Mean Value Theorem for Integration
(see [1]) we have

R, = (D" (y - f "M ——

(n +1)'

for some value ¢ in (x,a). The term R, (y) is called
the residual of the series after n + 1 terms. m

Theorem 2: Let f(x) be a function in class C*and
integrable, then
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Proof:
Since

Rn(y) = F()’) - Sn(y)
showing that
Sa(y) = F(y)asn — oo
is equivalent to showing
R,(y) > 0asn—- o

or
n+1

lim (b — a) f™* ()
From the fact that for any y

(n +1)' =0

we have

On the other hand, since f(y) is in class C®(a, b),
then for every y in (a, b) we have that f®(y) < oo,

and thus
s

lim (b~ a) Fon ey L T

which concludes the proof. m

It should be noted that the infinite series
representation introduced in Theorem 2 can be
considered as a linear combination in an
infinite-dimensional functional space (see [2], [3]).
We next provide some illustrations of applications
of our proposed infinite-series representation.

3. ILLUSTRATIONS OF PROPOSED
INFINITE-SERIES REPRESENTATION

In the first illustration we represent the exponential
function with our proposed infinite-series. Then, we
compute the value of a definite integral of a
trigonometric  function using our proposed
infinite-series  representation.  Afterwards, the
coefficients of the Fourier transform are obtained
using our proposed infinite-series. Finally, a novel
representation of the gamma function using our
infinite-series representation is given.

A. Representing the exponential function

Consider the functionf (x) = e*. Based on Theorem
2 we have
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where it can be shown that C.» = 1, for every x.

and thus,

B. Computing a definite integral of a

trigonometric function

We will now use our proposed representation to
2 .

compute the value of fon/ cos(x)dx using our

proposed infinite-series representation.
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C. Obtaining the coefficients of a Fourier
transform

We now wuse our proposed infinite-series
representation to obtain the coefficients of a Fourier
transform.

We know that any periodic function between -L
and L, integrable within this interval and with a
countable number of discontinuities can be
represented by an infinite-series representation of
sines and cosines of the form

ft)=ay+ Z a;cos(imt/L) + b;sin(imt/L)
i=1
where
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a;=1L"1 fo(t)cos(int/L)dt

b; =L"1 ij(t)sin(int/L)dt

Using Theorem 2,
obtained as
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the Fourier coefficients are

D. Representing the gamma function

We now present a novel infinite-series
representation of the gamma function based on our
proposed representation.

Consider the gamma function I'(z), defined as

I'(z) = f tZle tdt
0

for € R.
We first set

ft) =t*te ™,

and observe that

i -t ) z—1-
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Applying Theorem 2 we have the following gamma
function representation
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4. CONCLUDING REMARKS

In this work, we presented a novel infinite-series
representation of smooth functions and proof two
related theorems. The first theorem stated that an
analytical function may be represented by the
proposed series, while the second theorem studied
its convergence. At the outset of the paper we
presented different applications of the presented
results including a gamma function series
representation.

t=0
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