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GEOSTATISTICS WITH INFINITE DIMENSIONAL DATA: A
GENERALIZATION OF COKRIGING AND MULTIVARIABLE
SPATIAL PREDICTION

!Giraldo Ramén, “Delicado Pedro, *Mateu Jorge

Abstract. We extend cokriging analysis and multivariable spatial prediction to the case where the observations at each sampling location
consist of samples of random functions, that is, we extend two classical multivariable geostatistical methods to the functional context. Our
cokriging method predicts one variable at a time as in a classical multivariable sense, but considering as auxiliary information curves instead
of vectors. We also propose an extension of multivariable kriging to the functional context by defining a predictor of a whole curve based on
samples of curves located at a neighborhood of the prediction site. In both cases a non-parametric approach based on basis function
expansion is used to estimate the parameters, and we prove that both proposals coincide when using such an approach. A linear model of
coregionalization is used to define the spatial dependence among the coeficients of the basis functions, and therefore for estimating the
functional parameters. As an illustration the methodological proposals are applied to analyze two real data sets corresponding to average
daily temperatures measured at 35 weather stations located in the Canadian Maritime Provinces, and penetration resistance data collected at
32 sampling sites of an experimental plot.
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Resumen. Ampliamos cokriging andlisis y prediccion espacial multivariable para el caso de que las observaciones en cada punto de
muestreo consistira en muestras de funciones aleatorias, es decir, que se extienden dos métodos clasicos de geoestadistica multivariante al
contexto funcional. Nuestro método cokriging predice una variable a la vez como en un sentido clasico multivariable, pero teniendo en cuenta
como informacion auxiliar curvas en lugar de vectores. Se propone también una extension de varias variables kriging al contexto funcional
mediante la definicion de un factor de prediccion de una curva de conjunto, basada en muestras de curvas situado en un barrio del sitio
prediccion. En ambos casos, un enfoque no paramétrico basado en la expansion de funciones de base se utiliza para estimar los pardmetros,
v se demuestra que ambas propuestas coinciden cuando se utiliza este enfoque. Un modelo lineal de corregionalizacion se utiliza para definir
la dependencia espacial entre los coeficientes de las funciones de base, y por lo tanto para estimar los parametros funcionales. A modo de
ejemplo las propuestas metodologicas se aplican a analizar dos conjuntos de datos reales correspondientes a las temperaturas medias diarias
medido en 35 estaciones meteoroldgicas ubicadas en las provincias canadienses Maritima, v los datos de resistencia a la penetracion
recogidos en 32 sitios de muestreo de una parcela experimental.
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1. INTRODUCTION
The problem of spatial prediction of curves in a

In this paper we focus on spatially correlated
functional data, and particularly in modeling curves
collected in sites of a region with spatial continuity.
In spatial statistics, and in particular in geostatistics,
both cokriging analysis [8, 1] and multivariable
kriging [12, 11] are used for modeling observations
of vector-valued random fields. Here we adapt these
methodologies to the functional context. We extend
the multivariable kriging from random vectors to
the functional context by defining a functional
kriging predictor which allows to predict a whole
curve at an unvisited site by using as information
the curves sampled in the neighborhood of the
prediction site. In both cases (cokriging based on
orthogonality is not a required condition.

" Giraldo Ramén, M.Sc., Universidad Nacional de Colombia.
Bogota-Colombia. (e_mail: rgiraldoh@unal.edu.co).

2 Delicado Pedro, M.Sc., Universidad Politécnica de Cataluiia.
Barcelona-Espaiia. (e_mail: pedro.delicado@upc.edu).

* Mateu Jorge, M.Sc., Universidad Jume I. Castellon-Espaiia.
(e_mail: pedro.delicado@upc.edu,).

curves and functional kriging) we give a non-
parametric solution based on basis functions. The
problem of functional kriging prediction is also
studied by [9]. However, their proposal is based
only on orthonormal basis functions. In our case, we
propose a more general technique in which
geostatistical context has been considered from
several points of view. [5] is a pioneer work in this
topic. They propose three geostatistical approaches
to predict curves: a curve kriging approach and two
multivariable approaches based on cokriging on
either discrete data or coeficients of the parametric
models that have been fitted to the observed curves.
[4] propose a non-parametric approach for solving
the first approach considered by [5]. The predictor
in the first proposal of [5] as well as that considered
by [4] has the same form as the classical ordinary
kriging predictor [2], but considering curves instead
of one-dimensional data, that is, each curve is
weighted by an scalar parameter. [3] solve the
problem of spatial prediction of functional data by
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weighting each observed curve by a functional
parameter. This approach is a hybrid between
ordinary kriging and the functional linear
concurrent (point-wise) model such as shown in
[10]. The methodologies proposed in this paper
follow the line of [3] in the sense that each observed
curve is weighted by a functional parameter.
However, here the flexibility increases because
double indexed functional parameters are
considered and estimated. Now, each curve is
weighted by a functional parameter for the
prediction at each time. This modeling approach
follows the basic philosophy of the functional linear
model for functional response, for which a bivariate
regresion coeficient function must be estimated [7].
A good knowledge of the spatial and temporal
patterns of meteorological and climate variables is
often required when dealing with environmental
problems. Here we illustrate how the predictors
proposed can be used in modeling a data set
consisting of daily temperature measurements
recorded at 35 weather stations of the Canadian
Maritime Provinces. In addition we apply the
methodology to an agronomic data set
corresponding to penetration resistance data
recorded at 35 sites of an experimental plot at the
National University of Colombia. The remainder of
the paper is organized as follows. Section 2 presents
an overview of cokriging and multivariable kriging.
In Section 3 an extension of multivariable kriging to
the functional context is shown. The paper ends
with a brief discussion and suggestions for further
research.

2. COKRIGING AND MULTIVARIABLE
SPATIAL PREDICTION

In this section we show the basics of cokriging [8,
1] and multivariable spatial prediction [12]. As in
[11] we use the term cokriging to mean prediction
of a single random variable, and the term
multivariable spatial prediction when predicting a
vector of random variables. Let

{Z( ) (Z1 (s) Z, (s)) 18 € D} be a
multivariable spatial process defined over a domain
DcR?. We now consider the model
Z(s)=u(s)+e(s), ;where pu(s) is a mean
vector and £(s) a random vector with expected
value E(g(s)) = 0. It is assumed that the process

is stationary, that is, the mean vector is considered
constant for all seD, and the variance
(covariance), cross-covariance and crossvariogram

functions depend only on the separation vector h,
and not on locations.
We use the following notation:

° 2qu(sl.,sj)=\/(Zl(si)—Zq(sj)), where

'V stands for the variance.

° 7/71; - (7lk (SI’SO)""J/Zk (Snaso))

Yy (sl ,sl) Yig (s] ,sn)

7[q(sn’sl) 71q(n’ )

The cokriging predictor of the #k-th variable,
k =1,...,m, at the location s is given by

m
ZAk(SO):Z;ﬂlI;ZJ(Sl)“' "'Z j J

=

n m

2452 (s;) )

i=l j=1

° qu =

n
The predictor (1) is unbiased if Zﬂ& =1 and
i=1

n
Zﬂ“lf =0 forall j2k,j=1,..m
el

A variant of cokriging uses only the condition

iz =1 [6]. Using the method

i=l j=

of Lagrange multipliers to minimize the mean
squared prediction error subject to the

unbiasedness constraints gives the cokriging system
of equations, which in matrix

notation can be expressed by

cik = ck,

Geostatistics with infinite dimensional data with

r, - Iy L, 1 =+ 0 -0

lﬂ/\tl r/c/f r/cm 0 1 0
. T,p - Tpa o0 Ty 0 oo 0 w1 r x

T of ... o o .- 0 - 0ol |x7
o 1’ of o 0 0
o” o” 7 o 0 0
2



R. GIRALDO, P. DELICADO & J. MATEU

Ak 7f
Ak 7k
& k
A = j“Igcm . € - y Ifm ’

51 0

5i 1

o 0
where,

T
- * k
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and k—( e k)T for all 7,j=1,--

B 7// - 7/1j7 >/ nj > l’]_ bl ,m.

In multivariable spatial prediction [12, 11] all the m
variables are predicted simultaneously at s¢. In this
case the predictor kriging is given by

Z(s)

1
Zhn

21(.50) /,{!11 * Do || Zus1)

A

Zu(%0)) (A1 - A

3)
and the matrix of parameters is obtained by solving
the system [11]

[ 3J3)-6)

where I' and X are defined as in (2), A is the
matrix of parameters, A is a diagonal matrix of
Lagrange multipliers, 1is an identity matrix and

7/11 7,12 N
1 2 m
G=|" 72 "N
Ym Yo o I
Cokriging could be wused for predicting

simultaneously all m variables by cokriging each
variable, one at a time. The cokriging prediction for
one variable at a time coincides with the prediction
of that variable obtained by multivariable spatial

18

prediction [12]. The diference between both
approaches is given by their prediction variances.
With cokriging we obtain a prediction variance for
each univariate variable. In multivariable spatial
prediction, in addition to the univariate prediction
variances, it is possible to estimate a
multidimensional prediction region with its long
axis oriented toward regions where the predicted
variables tend to co-vary [12].

3. FUNCTIONAL KRIGING: TOTAL
MODEL

To define the functional kriging (total model)
predictor (FKTM) we assume the same stationarity
and isotropy assumptions. Thus, the predictor of the
whole curve is given by

7, (v) = zl [1 4 (1) 2z, (VdeverT, @
such that ﬂ,l(t,v),...,ﬂ.n (t,v):TxT—)R. The

functional parameter ﬂ,l (t,v) in (4) determines the

impact of the i-th observed function at time ¢ on an
unobserved function at time v. This modeling
approach is coherent with the functional linear
model for functional responses (total model) shown
in [10]. In that framework and assuming that we
have X € L, (7}),Y € L,(T5), with L, a space of

square integrable functions, the functional response
Y(v) is modeled in terms of the functional covariates

by
v(v)=a(v)+ jil I %, () ds (), )

where S i€l (T1 ><T2) is a parameter function,

acl, (Tz) is an intercept function and

cel, (Tz) is a random error process such that

E (g(v)) for all v. Estimation of functional
parameters in (5) is carried out by solving [10]

N 2

Min E|P(v)-rv(v)

(A )oshy ()

In our context the covariates are the observed

curves in n sites of a region and the functional

response is an unobserved function at an unvisited
location. Consequently our objective function is

2
E|X (0%, ()] -

depending on 4, (-, ) I (-, ~), or by using
Fubini’s Theorem
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J (%, ()%, (+) a

Considering stationarity, the objective function

becomes
v (2, ()-x, )

Again the functional parameters A; (t, v) in (4) are
estimated taking into account the constraints of
unbiasedness and minimum prediction variance.
Thus, the optimization problem becomes

in vix (v)- MNav
1](§V[ﬂn().|.T (XSO() Xso( ))d

st E(%y ()

:E(XSO (v)),‘v’v eT

We solve this problem by using an approach based
on basis functions. We expand the functional
variables usinag a basis function such as B-splines
or Fourier and the bivariate functional parameters

by
W)= 3 S8, ()8, () - 5 () 6,8(v),

Jj=li=1

(6)
where
i i i
aAr A2 - Gk
i i i
C.=| ¢ ¢ - Gk
1 . . . .
i i i
Ck1 Ck2 CKK (KxK)

Consequently the predictor (4) can be expressed as

X, ()= zl [,a"B(¢)B" (£} B(v)dr

n
y—
CZ,W a,

=3 awe B(v)=B" (v)
l-:l 1 1 i=1

1

T & T T .
=B (V)ZCI_ Wa, =B (v)a

(7
The predictor (4) is also considered by [9]. These
authors assume that J¥ is the identity matrix because
they consider a solution based on orthonormal basis
expansions. In our solution this is not a necessary
condition. Now we consider the unbiasedness and
minimum variance properties of the proposed
predictor. The expected value of the curve on an
unvisited site sy is given by

0

19

K
,E(;{SO(V)) = E{ 2 aOIBl(V)J

= E(Br(v)ao) =B’ (v)f(ao)

= BT (V)19
(®)

On the other hand taking expected values in (7) we
have

E(Zso (v)) =B’ (v)lZ:‘CiTWE(ai)

n
=8" (v)D.c/wg
i=1

©))
Consequently from equations (8) and (9) we note
that the predictor (4) is unbiased if and only if

n
B"(v)D.c/wg=58"(v)9, forall 9T,
i=1

that is, if and only if,

n
dciwg=39, forall 9T,

i=1
Given that W is full rank, this condition is

equivalent to
C 1
Z ¢ =w
i=1

The n functional parameters in the predictor (4) are
given by the solution of the following optimization
problem

, T ~ _pT |
Cy.l,}é,, IT V(B (v)ap—B (v)ao)dvs.t 1 C.=w
(10)
The integral in the objective function (10) can be
rewritten as

n
i=
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jTBT )V (do-ap) B(v)dv

- IT 7r( BT (1) (dg-a0) B() Jav
_ Tr(V (do-ao) [ B (v)B" (v)dv)
= 77 (V (dg-a0) W)

(11

The variance in (11) is

V (dg-ag) = ic} WV (a)WC, + 2i ¢/ wC(ap.a;)we

i=1 i<l
n
+V (ag) - ZZ CiTWC(ai,ao)
i=1
(12)
From (12) and defining the following matrices

Qi =WV (a) .05 =WC (ara; )W, N, = WC (a.a0)

the optimization problem (10) can be expressed as

Min i Tr (C,-T QiiCiW) + zi Tr (C,TQ,-]-C jW)
Cyom =1

i<j

+ Tr(V(aO)W)— 2iTr(Cl-TNl-W) + Zm(ici —w"
i=l i=1

(13)

Derivatives with respect to Cl. ,i=1,..,n and m in

(13) are given, respectively, by

)

20

n n
-1
2)°0,C;W —2NW +2m and ) C, —W
=1 i=1
The solution of the problem given in (13) is
achieved by setting these derivatives equal to zero.
This solution can be represented in matrix notation

as

On On o, 1[G M
01 On O 1| G2 N 2
in Qn2 an I C" N”
I I - I 0)ip w1
(14)

* — .
Where m" = mW ™. From equations (11) and (12),
an estimation of the integrated prediction variance

ajn =, o-szO (v)dszT V()ACSO (v) - xso (v))dv

is given by

52 =S (o) 23 1 oye )
i=1

i<j

+Tr(V (ao)W ) - 2i Tr (G N )
=

C,..C
1 n

solving the system (14).

where the matrices are obtained by
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