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ASYMPTOTIC DISTRIBUTION THEORY FOR CONTAMINATION
MODELS

Vera Francisco', Dickey David’ & Lynch James®

Abstract. In many situations one is interested in identifying observations that come from sources of variation other than the normal
background or baseline source. A simple model for such situations is a two point mixture model where one component in the mixture
corresponds to the baseline model and the second to the other sources (the contamination component). Here the goal is two-fold: (i) detect
the overall presence of Contamination and (ii) identify observations that may be contaminated. A locally most powerful test is presented
which gives some insights on how to accomplish this. Surprisingly, the test statistic can have an asymptotic distribution that is based on a
stable law that is not the normal distribution. Examples and simulations are given to illustrate the approach.

Keywords: multiple testing, anomaly detection, stable law, false discovery rate AMS 2000 Subject Classification: Primary 62F03, 62-07
Secondary 62E17, 62F30.

Resumen. En muchas situaciones se tiene interés en identificar las observaciones que provienen de fuentes de variacion distintas de la
normal de base o de la fuente de referencia. Un modelo simple para tales situaciones es un modelo de mezcla de dos puntos, donde uno de los
componentes en la mezcla corresponde al modelo de linea de base y la segunda a los de otras fuentes (el componente de la contaminacion).
Aqui el objetivo es doble: (i) detectar la presencia global de la Contaminacion y (ii) identificar las observaciones que puedan estar
contaminados. Una prueba localmente mas poderosa se presenta la cual da algunas ideas sobre como lograr el objetivo. Sorprendentemente,
la estadistica de prueba puede tener una distribucion asintotica que se basa en una ley estable que no es la distribucion normal. Ejemplos y
simulaciones se dan para ilustrar el enfoque.
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1. INTRODUCTION

. ) ) In low contaminated situations ( D zO), these
The point of this paper is to present a

contamination detection method based on the two
point mixture model

£, (x) =5/, (x) + pf, (x) , where p =1-p,
and 0 <p <1 (1.1)

asymptotics suggest using the LMP test to detect the
presence of contamination. If the LMP test rejects
p =0, then we can use the empirical posterior

P fix)

, where p* is the mle to investigate what

and to investigate the asymptotic distribution of the
maximum likelihood estimator (MLE) and the
locally most powerful (LMP) test for the parameter
p.- The distribution, f i is the so called

contaminated  distribution model which is
sometimes used to model outliers from the baseline

model fo- In this simple setting we shall see that,

when p =0, the MLE and the LMP test have

asymptotic distributions that are non-standard. They
exhibit the Chernoff phenomena (Chernoff, 1954)
of being two point mixtures. These two points
mixtures each have point masses at zero where the
second component in the mixture is based on an
a-stable law depending on the tail behavior of the

likelihood ratio f;(X)/ f,(X) under f;.
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e
observations may be contaminated (from fi).
Confidence bounds for this posterior can also be
constructed using confidence intervals for p* . The
Si(x)
Jo(x)

LMP for p =0 suggests using the ratio to

identify observations from fi.

The asymptotics indicate that the determination of
contamination when p is small can be problematic
using classical frequentist approaches, especially if
parameters need to be estimated. In addition, this
has similar implications for multiple testing
problems. E.g., in the analysis of microarrays, a

mixture model f; is the model for the expression

levels of the nonexpressed genes and fi for the

differentially expressed genes. In particular, there
can be a justification for the use of a central ¢
distribution where the degrees of freedom is
determined by the amount of replication in the
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experiment or a central normal if the degrees of
freedom is large. A similar justification can be used
to use noncentral #'s or noncentral normals to model
the differentially expressed genes. Here p is the
proportion of differentially expressed genes.

Next section shows the data analytic model for
detecting contamination, while Section 3 introduces
the LMP test for p. Section 4 considers the
asymptotic distribution of the MLE for p and the
test statistic for the LMP, along with the tail
behaviors of the terms in the LMP test statistic for
the normal and exponential distributions.

2. POOLING AND MIXTURES

In many data analytic problems the observations
Xi,...,Xn arise from pooling data from various

sources of variation. In many cases, the pooling
model has the following formulation for two
sources of variation. In this formulation, a
configuration C which is a subset of

{1, 2,..., n} indicates which observations come from

one source and C° from the other. For example,
such a pooling model might occur in a binary
network where the network is modeled by a Markov
random field. In the spread of an infectious disease
over the network, the nodes are partitioned into two

groups, C and C°, where Cis the Collection of
sites that have elevated levels of infections and C is
the Collection of sites which are normal. In the
normal case the number of infections is governed by

fo while for the elevated level by fi. Then,
p((C,CC),Xl,...,Xn)

= Kexp[E((C, Cc))} ieﬂcfo (Xi)ie@c fi (Xi)
where E ((C, CC)) is related to the energy of the

partition (C, CC) (Huang, 1963) and where we

have suppressed parameters in £ ((C, ce )) and the

normalizing constant K. Here we have assumed the

positivity condition that all partitions have positive

probabilities. In general, the pooling model is given

as follows.

¢ Generate a configuration C with probability
(@)

+ Given C, for i€ C,X;are iid ~ fo and, for

i€C, Xiare iid ~ fi
- C and C°model a spatial or temporal
(e.g., a change-point) pattern
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- You are "pooling" observations based on the

configuration C where the configuration C is a

hidden variable

- The likelihood is then

3. p(Q)] ()] (%)
C i€ ieC*

Throughout we assume that all densities f* are
absolutely continuous with respect to a common
measure m and absolutely continuous with respect
to one another. The basic data analytic method is as
follows:
* Envision that the data are the effects of pooling

observations from fo and fi where fo is the

background distribution and f; is the distribution
of the contaminated observations.

» Treat the data as if it is from a mixture model and
use a mixture model to estimate the mixing

for  fo fi, that is, the

proportions in C and C°. Use the estimates to
test the null hypothesis that one of the mixing
proportions is equal to zero. If this hypothesis is
rejected, see if the fitted mixture model can give

proportions and

insights into which observations came from fo,

that is, into the configuration C.
Formally, the basic data analytic model is the
simple contaminated model

« Xi,.., Xuiid~ £, =(1-p) fo + pfi
- fo 1s the density of the background mode.

- fi models the contamination.
- The likelihood is then.

ﬁ{(l-p)ﬁ(Xi)wﬁ(Xf)}

u i .
=ZZ(1-p)’p””|:| fo(Xi) [ fi(Xi)
Jj=0 C; ieCj ieC’
where Cjdenotes a subset of size j from
{1,....,n} .
For low contaminated models one approach is to
calculate the mle, p°, of p. Use p’to test
Hy:p=0versus H;:p >0.If His rejected see
if the mixture model can give insights into the
configuration C;. For example, calculate the

empirical with

p(C))=(1=p") p Then

Bayes posterior prior
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p(C,«|X1,...,X,,) o<(1_p*)fpm—/iel_lcjﬁ)(x,»)igﬁ()ﬁ)

2.1)
Another approach is the following two stage
multiple testing type of method for p =0. This

suggests using the locally most powerful (LMP) test
statistic (discussed in the next section) for testing

Hy:p =0 versus H|: p >0 as a screening test to

detect if contamination is present. If the null
hypothesis is rejected, then further diagnostic tools
are used to try to identify which observations are
contaminated.

One was given in (2.1) and some others are given
below.

For a mixed distribution
N (o So(Xi)
fp,AO(Xl) —(1 p) 7Xi)” and

Al(X,')=1—Ao(Xi) are referred to as the
assignment function (or membership function), of
Xito fo and fi, respectively. The assignment

function can be interpreted as the posterior
probability that an observation came from one of
the components of the mixture, and can be used to
decide which observations are contaminated.
Related to the assignment function is the
contamination assignment set measure,

7 (B)
F, (B)
i=0,1,p. The functions Ao (X) and
Do (B) =1-p (B) with B =(-oox] or B =[x,)
are also referred to as the local false Discovery rate

(FDR) and the FDR in multiple testing situations
(Efron, 2007). Note that when the null hypothesis is

rejected, p; (B) (with p replaced by its mle

pi(B)=p where F; (B) = fi (x) dm (x)
B

for

estimator) could be interpreted heuristically as an
empirical Bayes posterior probability that an
observation is contaminated given that it is in B and
gives some indication of the proportion of
contamination in B among the background. Also
note that

Fl([x,x+€))/m([x,x+€)) _
Fy([x.x+€)) [m([x,x+€))

4(x)

i ([xx+e)) = p

as € -0
The LMP test (next section) suggests the use of
ﬁ/fo (Xi) to  detect the

observations. A plot of this quantity should be
centered around 1 when there is no contamination.
To find a significant collection of spurious

contaminated
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observations consider the following approach based
on the LMP test statistic. Define

Li =(f| (Xi) ) (X,'))/fo (Xi). Let the order

statistics be L) <L) <...<L,) and let j(i)

denote the inverse rank, i.e., L) =Lj(). For

mixture or scanning purposes, consider the sets

D; ={j(n),...,j(n - +1)} :{k:L(,,_M) st}
(2.2)

For mixtures with mle p”, assign D; to fi and

Df

 to fo where i~np". Look through the

increasing sequence of sets D; for a spatial pattern

to emerge. Use (2.1) to determine which Dl»c is
most probable.

3. THE LMP TEST

In this section we discuss the LMP and the MLE
of the simple contaminated model (1.1). To obtain
the LMP test we need the following. Let

(£ (1) f (X)) = 0( f) =108 i £ (X7)
denote the log likelihood of a set of observations
from a common distribution f'and let

or)-o7, |

®p, (fi:/0) = lim
P~ Dy

P=py

= S 1og ] /()
N P=py
_ 5 .fﬁ(Xi)—.f§(Xi)
il S (X0)

From the generalized Neyman-Pearson lemma (cf.,
Ferguson, 1967, Sections 5.1 and 5.5), it is easy to

show that the LMP test for testing Hy:p = p,
versus Hjy : p > p, is based on (Dpo (fl;fo) (see

Ferguson, 1967, equation 5.78).

The LMP test statistic is related to the gradient plot
introduced by Lindsay (1983a) in the study of
mixed distribution models of which (1.1) is a
special case. He uses the gradient plot to determine
when the one point mixture mle (i.e., p = 0) is the
global mixture mle. When it isn't, this suggests that
some contamination is present. However, as shown
in the next section, when the sample size is large

and p = 0, the MLE p" will be greater than 0 with
probability 0.5. The function @ p (fl;fo) plays a
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prominent role in the analisis of data from mixtures
models where it is the directional derivative

H(Xz)

D(6.0) =0 (/o1 {f
( ) ( Q) fo(Xi)
below. Here the mlxture is over a family of
densities { fo:0¢€ O} . Let M denote the set of

probability measures on ©. For Q € M denote the

1} defined

mixed distribution over the family with mixing
distribution O by

fo =1/6d0(6)
For Xi,..., X being iid from fy, the likelihood
and log likelihood are given by

):HfQ(Xi) and ¢ fp) =log ] fo(Xi)
Jo =(fo (K1) fo (X))

directional derivative of ¢ at fQo towards le is

O oy 0g) = 1 (o1 =€) 15, <10 - 12,) 2

where The

Jo(Xe) = 1o, (%) 1o, (%)
_z 1 0 - 1 _
= fQO Xl) i=l fQO(Xi)

=[p(6.0)a0i(6)

The directional derivative D is used to identify
when a k-point MLE, Q;é , for L ( Q) is the global
mle 0~
function restricted to mixtures with k& components).
The basic idea is that D(@; Q) =0 at the support

(a k-point mle maximizes the likelihood

points of the k- point MLE Q* and D(Q;Q) <0

if and only if 0~
1983a,b).

is the global MLE (Lindsay,

4. ASYMPTOTIC CONSIDERATIONS

In this section, we determine the asymptotic
distributions of the MLE p" of p and the LMP test

statistic for testing Hy:p =0. When testing

and p, is in the interior of the

Hy:p=po

parameter space, i.e., 0<p, <1, the usual
asymptotics go through, since they are based on
sums of bounded random variables (see Proposition

4.1). Therefore, we focus only in the case when
testing Hy : p =0. Section 4.1 considers the case
when the true value of the parameter p =0. Since
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p =0 is on the boundary, this leads to asymptotics

under nonstandard conditions. In particular, the

asymptotic distribution of the MLE p" is a mixed
distribution, where one of the components is
degenerate at 0, and the other is either half normal

when the Fisher information
2
Iy =Eo ([(f] —fo)/f()] ) <o oris a stable law

when [y = o0,

Section 4.2 considers the distribution of the LMP
test statistic for testing Hy: p =0 when the true
value of the parameter 0 < p <1. The results

therein can be used for power calculations. Section
4.3 gives the distributional properties of the ratio of
two densities for the cases used in the examples and

simulations. Though out this section, let
Xi,..., X be iid with density
fp (x) =(1-p) fo (x) +pfi (x)  where all the

random variables are assumed to be defined on the

same probability space. Also let

Zi = fi (xi)] fo (xi) and
Xi) - Xi

L =7 -1 AR e et

fo (Xi)

statistic from Section 3 corresponding to the null
hypothesis Hj : p =0 is denoted by 7, =X Li .

3
Let o =Ep (Lf) and W; =Ep (|Li| ),i =0,1
where Eo denotes expectation under H(. Note

that /g is the Fisher information under H. Also,

this Gy the
cumulative distribution function of a stable law with

throughout section, represents

parameter a € (0, 2] , 1.e., its characteristic function
is (A.1). Define Gg =1-Gy,.
The next proposition is used in some parts of this

section and is the basis for the claim that when p,

is in the interior of the parameter space the terms in
the LMP test statistic are all bounded.

PROPOSITION 4.1.
i (x) - fo (x)
(1-p) fo (x) + p fi (x)
is bounded for 0 < p <1 (hence all its moments are

finite).
Proof. Notice that
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fil)-fol) 1 fi (%)
(1-p) fo () +pfi(x)  p| 22 1 () + £ (v)

p

1 fo (x)
=7 fo(x) +%f1 (x)

Therefore,

| AW-n) |
‘(1—P)f0 (x)+pfi (X)‘

1
l-p

1
< —+
p

4.1 FIRST CASE: p=0

The next few lemmas show the distribution of the

MLE p” when p = 0 under different conditions.

Lemma 4.2. Under Hj:p =0,p" converges to 0
almost surely.

Proof. Let
1(p) =e{ 1)

!(») =£j¢(fp)=£}log|'!fp()ﬁ)=ll e
i= i= p\Ai

and note that

"(p) =% [fl (Xi) =1y (ZX")T <0
i=l fr(Xi)
So / ( p) is concave and attains its maximum, p",
either at 0 or 1 or on (0; 1). Let U, (p) =1'(p)
where U, =U, (0) and note that U, (p) is the
sum of n iid random variables with
Eo(fl (X0) 4, (1)
fp(Xi)
<O0forp>0 (4.1)
U, £0,U, (p) <U, since l(p) is

jZO when p =0and

When
concave. Thus, [/ ( p) attains it maximum at 0 on
{U,, SO} . When U, >0,l(p) attains  its
maximum on (0,1]. Since U, (p) has mean less

than 0 for 0 < p <1, U, (p)/n converges almost
surely to a negative number (because of Proposition
4.1). When U, (p) <0 and U, >0,0<p <p

with U, (p*) =0 since U, (0)>0 and
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&1, 1X6) £y (X)

U, (p) < 0. Thus, lim p” < p almost surely on
the set where U, ( p) / n converges to its mean.
Since p >0 is arbitrary, this with the previous

paragraph implies that p* converges to zero almost
surely.

Lemma 4.3. If /o <o and W; < oqi =0,1, then,
under H o,\/; p" converges in distribution to X
X =0 with probability .5 and

- ‘ (0,15 )‘ with probability .5.

where

Proof. If p” € (0,1) , then l'(p*) =0 and
(o) =1 (o) ) ()
o) = (0) -1 () = (0) () - A
(4.2)
where p' is between 0 and p* and

3
) n ﬁ X _ﬁ) Xi
! (p)=2z[ ) E )]
i=1 fp(Xi)
Note that since the derivative of ["'(p) is

(o)
I'"'(1) <I"'(p) <I'"(0) . Thus, since Wi < oo for

nonpositive, nonincreasing  and

i =0,1, the sequence Z'”(p)/n,n =1,2,... is
bounded almost surely. It follows from (4.2) that
when U, >0 and U, (1) <0,p*e (0,1) and

(o) _(0) - ()W)’
NI —

') (\/;p) (1+Rn)
) 4.3)

In (4.3) Ru goes to zero almost surely since p*
converges to zero almost surely, the sequence

l”'(p)/n,n =1,2,... is bounded almost surely
and —l”(O) /n converges almost surely to /o.

When U, <0,p" =0. Since Un/\/; is
asymptotically N (O,IO) and U, (1) / n converges
almost surely to a negative number by (4.2),

P(U. <0) and P(U,>0and U, (p)<0)

both converge to 1/2. The second part of this lemma
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follows from this and from (4.3) since —/ ”(0) / n

almost surely to

(0)/\n

converges
2

Eo([ﬁ —fo/fo] )210 and

converges in distribution to N (0, IO) .

For the next lemma, { an} is a sequence of real

numbers and
(A (x:) - o (x:))°
az _ﬁ)(Xi)fp (Xi)

Lemma 4.4. If Z; Satisfies (A.2) for some
I<a <2 (ie, is in the domain of attractation of

Va(p) =—

an « -stable law) and an satisfies (A.4), then,
under Ho, anp*Vau ( p*) converges in distribution

to X where X =0 with probability Ga (0) and
P(X>d)=Ga(d) ford>0.

Proof. For p* €(0,1),/'(p*) =0 and

(o) =r(0)-r(»’)

< 1 1

2= ey 7

(fi(x:) -f0 ()’
P ()

=p'aiVu (p*)

4.4
Note that when p* € (0,1) ,

1'(0)

An

=anp*Vn (p*)

and l'(O) / a, converges in distribution to Ga by

Lemma A.1 since Eo( ) =1. Since p* =0 when
' (0) < 0, the results follows.

From the proof of Lemma 4.4, by setting
an = \/; we can get the asymptotic distribution of

p* without the third moment assumption given in
Lemma 4.3. The next corollary states this result.
Corollary 4.5. If [, < o, then, under H,, a =2

and p*\/; Va ( p*) converges in distribution to

X where X =0 with probability .5 =‘N(0,10_ 1)‘
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and  with probability .5. Moreover, Vj (0)

converges almost surely to /.

Remark 4.6. When 1< a <2,V (O) converges in
distribution to a stable law with parameter a/ 2 (by
Corollary A.2). So, one Could replace Vx ( p*)

with V, (O) in (4.4), except that one could not
justify this replacement without putting some
condition on / '”( p) The next few lemmas show

the distribution of the LMP test statistic 7, for
various cases.

Lemma 4.7. If [; <1, then, under HO,Tn/\/;

converges in distribution to N (0, IO) .

Proof. The proof follows by a direct application of
the central limit theorem.

Lemma 4.8. If Z; and a, satisfy conditions (A.2)
and (A.4), respectively, for some 1< a <2, then,
under H,Tn/an converges in distribution to Ga

(a stable law with parameter & ).
Proof. The proof follows by a direct application of
Lemma A.1

If f, has an unknown parameter and p =0, an

identifiability —issue surfaces that makes it
impossible to estimate that parameter. In this case,
if the parameter is estimated from the data and used

to calculate 7}, it is not clear to what limit

distribution 7, is converging. The simulations
shown later illustrate this point.
4.2 Case2: p>0

The asymptotic distribution of 7, given in Lemmas
4.7 and 4.8 is for p =0. The next two lemmas give

the asymptotic distribution of 7, when p > 0. For
this, assume that X, ~ f, =(1-p) fy +pf, and
let Wy =E,(L3}).

Lemma 4.9. If [y <o and W;< oo, then

(T n —nply ) / Jn converges in distribution to
N(O,IO + pWy —pzlé) .
Proof. It is easy to prove that E » (Ll)

E, () =1,+pW,.
from a direct application of the central limit

theorem.

= pl, and

The result then follows
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Lemma 4.10. Suppose Zi1 and dn satisfy
conditions (A.2) and (A.4), respectively, for some
O<a<2. If 1<a<2, then [y<oo and

(T —npl,) / an converges in distribution to Ga,
while if O<a<l, Tn/an converges  in
distribution to Ga. If @ =1, then (T = fin) /an
converges in distribution to a stable law with

parameter 1, where L/ is defined as in (A.3).

Proof. The proof'is a direct application of the results
in Appendix A.

4.3 DISTRIBUTIONAL PROPERTIES OF
DENSITY RATIOS
In this section, we consider the properties of

Z=f (X)/fo (X) for some frequently used

distributions. These properties are required to use
the lemmas in Sections 4.1 and 4.2. Section 4.3.1

considers the case when both, f, and f, are

exponential distributions, and Section 4.3.2
considers the case of the normal distribution.

43.1 EXPONENTIAL DISTRIBUTION

1
Suppose f (x) =5¢ x/el[x>o] and let f; = fe,

for j =0,1.If X ~ fg then

1[zs0] +(1 ‘(Z//J’)_a) 1[0<z<ﬁ]
when g < g,

leepy +(2/B) Vo
when g > 6,

Where =iand a =i.
4 6(6 -6

For § >90,Zan(Z>z) - c=8% as z > oo,
which corresponds to the first row in Tables 5 and
6. In particular, if 0 <a <2, condition (A.2) is
satisfied and therefore Z is in the domain of
attraction of an -stable law. If a >2 then
condition (A.6) is satisfied and Z would be in the
domain of attraction of a normal distribution. The
appropriate normalizing constant is

]
an :(ﬂasan) /afor 0<a<2, and

an =\/0.5,82nlogn for a=2, and
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an =./0.5n varg (Z) for a > 2. The mean of the

density ratio Z is

aB

—— when § <, or (§>8, and a>1)
Eg(z) ={a-1 '

oo when 6 > g, and a <1

and the variance is

2
a
2ﬂ when g <) or
(a1 (a—2)
varg(Z) = (8> and a>2)
0o when § > and 1 <a <2
undefined when 6 > @ and a <1

In particular, when 8 =&, =ﬁ/(ﬁ —a)) and

the mean becomes Ey (Z) =1 and the variance,
0

which is actually [, becomes

(61 _60) when 6,<26,
1, = varg () =16(26,-6))
o when 6,226,

For 8 =6} the mean becomes Eg, (Z) =10 +1,

which is infinite when 8, =26, , and the variance

becomes
63(6,-6,)°
0( 12 0) when 6<1.56,
267 (26)-8)*(1.560-6))
varg (z) =400 when 1.56,<6 <26,
1
undefined when 6,226,

4.3.2 NORMAL DISTRIBUTION

Let ¢(y) :J;?

standard normal distribution. Suppose now that

f o (x) =¢((x —,u)/a)/a [and let

Hs
f.=f 5 for j=0,1. Assume also that
b T

_ 2 .
e’ denote the density of a

X~f S Before examining the tail probability
I

of the density ratio, we need the tail probability of a
normal distribution. Let Y [lbe a standard normal
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distribution with density @ (1. It is well known that,
for y>0,

el <Pl < [gl)

This implies that

2 2
Lz <\2mye’ /ZP(Y>y) <1

1+y
and thus
. y2/2
lim 2mye P(r>y) -1 4.5)
y— o
/Jj /j./'
Let 5 =L 70 for
7ot og
The tail

j=1,2| for j=0let Sy=" 1|,
ol o}

probability of the density ratio when o 12 > Ug is

given by
P/f,z72 (Z > z)
=P o2 fi (X) >z
- fo(X)
P
=P 5°> 8 -51 log(B) |+2a1
.o T al —B;—og alogz

= P(Y > -b +\/a[(?z—i’32—log(ﬂ)j+2alogzj

+P(Y >b +\/a[(ylz_y°2210g(ﬁ)j+2alogzj
gy -0,
where
ot () + 05 (4 -)

2 2
g Ul _UO

oot

> El

02(012 —a&)

and ,[)’:crg/crlz.
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This expression, combined with (4.5), gives us the
tail behavior, i.e., as z — 090,

£(X)
“2alogzP -
z alogz ;I,UZ (fb (X) >Zj &}
when b =0, and
£(x)
z%\2alog z exp| -by2arlogz | P >z |—ec
( ) 10 fo(X) 2
when b >0,
2
a (44 ~H4)
exp| 5 log( f) L1
2| 5o
where ¢ =2 NG and
b (4=t
exp| —+3%{ lo —
) 2|/ of-o3
Cy =

NE

Therefore, when o 12 > 0, g , the tail behavior
coincides with those in Tables 5 and 6, which give
the appropriate normalizing constants for 0<a <2
and a =2 respectively. When a >2, then the
appropriate normalizing constant is

a, =./.5nvarg (Z) .

The mean of the density ratio is

1 202
~| o7 +2 b -6; D
e(z[ O +24161 -8 when of =03

[l o)

[aﬂe[zaz a-l
a-l1

when 012<U§ or

E,,: (z) =

ot>of and a>l)

oo when o?>0¢ and a<l
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The variance is given by

[ 025]2 ]J (0’2512+2/./6,—62) when G|2=G§
e -1 |e
2 2 9 2 2
e — %(20 51+,u) -u” =8 when of <gj or
ap, 202 4"
a-2
et )
2 -1
var 2 (Z) = —g’i o’ (012>a§ and a>2
oo when of>0¢ and l<a <2
undefined when of>0¢ and a<l
For f,u ,2 =/, the mean becomes E\(z) =1, +1
When f/j ,2 =/, the mean reduces to E,(z) =1 and the variance becomes

and the variance, which is /, o » reduces to

1, =var, (2)
2/ 2
e([/fl ~t4o] /UO) 1 when of =0
s (£h~Ho)’ ,
- g e 208 -0} 1 when of <0y
01\/203 —012
0o when 012 2203
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5. SIMULATIONS

For the first set of simulations, background and
contamination data are generated from exponential

distributions with means &, =166.206 and

6, =592.922, respectively, which are the estimated

means for the 2-point mle for the Mining Data in
the next section. Samples of sizes n = 100, 500,
1000 are generated, with 0, 1 and 5 percent of
contamination (p = 0, 1.01, .05). With each sample

we calculate 7, = zl":] / (X]lpz (_)(fio)(Xi) and

_ nf;(Xi)_ﬁ)(Xi)
=T )

f, are estimates of the densities based on the

, where f, and

maximum likelihood estimators of &, and 6.

These estimates are used as if they were the true
parameters and a normalizing constant and critical
value are calculated based on these estimates. The
process is repeated N = 10000 times and the number

of rejections of the null hypothesis H,:p =0 at

the .05 level are recorded.
Following the results from Section 4.3.1, the

variance of the terms in 7,, corresponding to f, is
infinite, but the tail behavior of the density ratio,
under H |, follows that of the first line of Table 5
with o = 592.922/(592.922-166:206) =

1.3895 and ¢ = (166.206/592.922)"*%° =0.1708081.
Hence, the normalizing constant is

[e(['ul —ﬂo]z/"g)_]}(ﬂ#l —#0]2/012) when o =0¢

when U]2<1.5002

when 1.50¢8<0?<20¢

when o 220¢

_ 1/1.3895
a, =(0.1708081s; 3g957) = .4881128n

. From Lemma A.1, the rejection region defined by
T, / (.4881128;10'7196832) > 440186 would reject

the null hypothesis with probability 0.05 if there are
no anomalies. A similar process is done to calculate

the rejection region S, / a, >d s in each sample,
where the normalizing constant @, and the critical

value d,os change from sample to sample, and are
calculated based on either the normal or the stable
distribution®. The results of these simulations are
shown

4 if (91 < 290, and these are assumed to be the actual

parameters, the variance of the in Table 1.
TABLE 1
Asymptotic distribution theory for contamination models
Proportion of rejections of /1, 0 » o anomalies, out of 10000

simulations with background and contamination generated
from exponential distributions with means 166.206 and
592.922, respectively, with p =0, 0.01, 0.05.

Proportion of anomalies
Based on T, Based on S,

0.7196832

Sample sizes | 0| 001 | 0.05 | 0 | 000 | 0.05

100 0.0492 | 0.1646 | 0.5316 | 0.2853 | 0.3898 | 0.6340
500 | 0.0483 | 0.3836 | 0.9361 | 0.3248 | 0.5725 | 0.9252
1000 | 0.0544 | 0.5454 | 0.9935 | 0.3387 | 0.6808 | 0.9786
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The simulations show that when using the true
parameters to calculate 7, the proportion of

samples that rejected the null hypothesis when it is
true is about 0.05, as expected. Notice that with the
background and contamination means fixed at

G, = 166206 and € = 592.922, the power
increases as the proportion of anomalies, p,
increases and as the sample size increases. The
exact asymptotic power for the LMP test can be
calculated using Lemma 4.10 and the results from

Section 43.1 and Table 5, with
a=6,/(6 -6,) =03895003 and
c=p(6,/8) =0.6093393p, which gives

2.567392

1
(csa) e =0.4473926 p . Rejection occurs

when T, /(.4881128110'71%832) >4.40186. which

is equivalent to rejecting if

T / (0. 4473926p2.567392n2.567392) > 4.802503/( P S67392,,] 847709

The left hand side of this inequality converges to a
stable law with parameter a = 0.3895003. The
power can be obtained for each value of » and p.
For instance, if n = 100 and p = 0.05, the power is
the probability that a value from a stable law is
larger than 2.119844, that is, 0.510141. In the case
of n =500 and p = 0.01, the tail starts at 6.750576,
which gives a power of 0.3517792. For n = 1000
and p = 0.05, the power is 0.996379. The
simulations confirm these values. If estimates are
used as if they were the true parameters, rejection
occurs 28.5% of the time when there are no
anomalies present (p = 0) and n = 100. This is
troubling and indicates that false discovery is a
serious problem in this case. This is not the case
when p > 0 and Appendix B indicates the necessary
adjustments that need to be made when estimating
parameters. For the second set of simulations data
are generated from normal distributions, where the
background consists of standard normal variables

( My =0 and a; =1) and the anomalies consist of

. . 2
a normal with mean £ =0 and variance o, =3.

Samples of sizes n = 100, 500, 1000 are generated,
with 0, 1 and 5 percent of the observations being
anomalies.

The results from Section 4.3.2 and Table 5 are used
to determine the rejection region for each sample.

Since the variance of f;/f, is infinite under f;,

the tail behavior of the distribution of the ratio
needs to be taken into consideration to see what
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stable law applies when =g, =0 and
o’ =U§ =1. This is described in Section 4.3.2
with

a =3/(3-1) =1.5,8=1/3,b =0,c,

=282 Jﬁr:z(%)l's/ ’ /\/ﬁr=o.350025

The rejection region is now found using the results
from Table V: reject the null hypothesis

Hy:p=0if

Tn 5 > 3.824235
07274158 n/ log n

The results of these simulations are found in Table
II. The LMP test seems somewhat conservative for
n = 100, possibly because this sample size is too
small to observe convergence to the stable law. This
resulted in a test with somewhat poor power. For
n = 500 and n = 1000, the test seems to perform
better.

TABLE II

Asymptotic distribution theory for contamination models

Proportion of rejections of H 0 » ho anomalies, out of 10000

simulations with background and anomalies generated from
normal distributions with mean 0 and variances 1 and 3,

respectively
Proportion of anomalies
Sample sizes 0 0.01 0.05
100 | 0.0371 | 0.0788 | 0.2331
500 | 0.0447 | 0.1533 | 0.5649
1000 | 0.0408 | 0.2295 | 0.7885

The exact asymptotic power can be calculated for
these tests by using Lemma 4.10, Table V and
Section 4.3.2. Suppose the true proportion of
anomalies p is positive p>0. Then

P(z,>z)=(1-p) B (2, >2) +pP (7, > 2).

Let a=1/(3-1) =05 and
0.5/2

c= 2(%) p/«/ZIT =0.6062612p Thus, to get a

stable law we need to normalize 7, by

0.2886751p> (n/ Jlogn )2 . A rearrangement of the

rejection region (which was normalized originally

by 0.7274158(n/\/10gn)2/3) would result in

rejections when
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2/3
0.7274158(n/ |
n 5 >3.824235 - foer .
0.2886751p" (n/logn) 0.2836751p%(n/logn|
_ 9.636468{logn)”>
ot

The exact asymptotic power when n = 100 and
p =0.5 is the probability that a stable law variable

with  parameter 0.5 is  greater  than
9.636468 (log 100) _
a3 =22.98661. This

57100

probability is 0.1652201. Similarly, for n = 500 and
proportions p = .01 and p = .05, the probabilities of
rejecting the null hypothesis are 0.08789053 and
0.4189768, respectively, whereas the simulations
estimated these numbers as 0.1533 and 0.5649,
respectively.

6. DATA EXAMPLES

Following the analysis from Grego et al. (1990) of
the mining accident data, Figure 1 has the gradient
functions for the 2 and 3-point mixture mle's where
the mixing is over the mean of an exponential
distribution and Figure 2 has the assignment
function for the second component in the 3-point
mle. The estimates of the means and mixing
proportions are given in Table III. The gradient plot
indicates that the 2-point mle is not the global mle
but the 3-point is. The assignment function indicates
a distinct difference in the first 53 times and rest of
the times. Further analysis by Grego et al indicates
that the first 53 are well fit by a single exponential
and the rest by a 3- point mixture.

TABLE III

Asymptotic distribution theory for contamination models
Maximum likelihood estimates for the mining data

| owl) | om) | m
3-point e | 502,020 175140) | 166,206 [ S24851)
3-polt wle | 505,495 ( 171370) | 171587  805528) | 200072 (023083

For the mining data we will use an exponential with
mean 171.587 as f; and a 2-point mixed

exponential with means 595.495 and 29.0972 and
mixing proportions proportional to .171379 and

.023093, respectively, as fl That is, fl =fQ1
where () has point masses at 595.495 and 29.0972
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with mixing proportions .881253 and .118747 and
the

FIGURE 1
Asymptotic distribution theory for contamination models
Gradient plots of a 2- and 3-point mixtures (mle) of
exponentials for the Mining Data
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family, { f ﬂ} , being mixed over is the exponential

with its mean parameterization. These are assumed
as the true parameters and Lemma 4.8 along with
Table V can be used to calculate critical values for
the LMP test statistic. The LMP test statistic, 71, P
assuming all the parameters are known, is then
given by
. %e—x,-/595,495
T, =0.8812528Y | 295495 -

L p=X;/171.587

=1\ 171587

» 1 p-X;/29.0972

+0.11874723, 29.(1972
=1\ 171.587

e~ Xi/171.587

Under the null hypothesis, i.e., X; ~ f,, the terms
in the first sum have infinite variance whereas the
terms in the second sum have finite variance (see
Appendix 4.3.1 for details). Using the notation of

Appendix  4.3.1 with & =171.587  and
6, =595.495, let
@ =595.495/(595.495-171.587) =1.404774 ,
—(171.587/595.498) 4977 = 0.1741281 and
0.7118582

n =0.5052435n .If T, is normalized by

ay , the second sum will quickly converge to zero

as n — oo, The first sum converges in distribution
to a stable law with parameter a =1.404774.

T, /(8812528a,,)
distribution to the same stable law.

Therefore converges  in
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For the T, =574.871
T, /(.8812528ay,) =45.77311. Using Table IV for

a =1.4 we can see that the p-value is between .005

mining data, and

FIGURE 2
Asymptotic distribution theory for contamination models
Assignment function for the second component of the 3-point
mixture (mle) of exponentials for the Mining Data
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and .001. The actual p-value is 0.002102145
(calculated computationally with & =1.404774).
This indicates that there is strong evidence that

some observations come from f;. Note that

parameters in both f, and f, are being estimated
based on the 3-pt global mle. These estimates have
to be taken into consideration in using the LMP test
statistic to determine if spurious observations are
present. As pointed out in the appendix, it would be

impossible to estimate f, if p =0, and hence the

distribution of the LMP is not clear in this case. If
p >0, then we only need to check the regularity

conditions discussed in Lemma B.1 and Remark
B.2. For the exponential distribution these
conditions reduce to the finiteness of the first three
moments. We now illustrate some of these ideas
using gene expression data. The approach here will
start by the assignment function to identify possible
anomalies (expressed genes) to get a pooled model.
After that, we do the LMP test. Efron (2007)

compared prostate data of m; =50 non-tumor

subjects with m, =52 tumor patients for each of
n = 6033 genes (see Singh et al., 2002). For each
gene they perform a two-sample t-test to compare
the mean gene-expression between cancer and
noncancer subjects. Let 7; for i =1,...,n denote the
test statistics used for each gene. For genes that
have the same mean expression values for both
groups ti will follow a central t-distribution with
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m; +m, -2 =100 degrees of freedom. Efron

(2007) defines z; =¢p ' (Floo(li)), where F

v
denotes the cumulative distribution function (cdf) of
a t-distribution with v degrees of freedom and @
denotes the cdf of a standard normal distribution.

Then the distribution of z; is standard normal for

those genes that have the same mean expression for
both groups of subjects. Efron then fits the mixture

£ =(1-p) fo +pf; as follows. Suppose f is a 7-
parameter exponential family and estimate this

density from the z-values, obtaining fA . Suppose

fo is the standard normal density and estimate p by

log((l—p)fo) as a

approximation” of f . From this he estimates the

using “quadratic

assignment function A, (false Discovery rate).

These calculations can be done using the R package

locfdr. He discovered 51 genes using false
discovery rate, declaring an anomaly when
Ay <02.

Another approach for this data is to work directly
with the t-values. Let (/;; and (/;, be the mean

expressions of gene I for tumor and non-tumor
subjects respectively. Suppose the variance of the

gene-expression for gene I is O ,-2 is the same for
both groups. Then f; follows a central t-distribution
if f;=4;,. When the means are diferent ¢;

follows a non-central t-distribution with non-
Hil=Hi2

02(¢+¢j
t\m my

case the degrees of freedom are m; +m, -2.

centrality parameter é; = . In either

Assume that all non-centrality parameters have the
same magnitude, i.e‘,|é;| =&. For simplicity also

assume that half of the non-centrality parameters are
positive and half are negative. If the proportion of
t-values that follow a non-central t-distribution is p,

then  the each t;

1

f= (1 —p) fo+pfi where f, denotes the
density of central t-distribution and

distribution  of is

fi=5g 5 +-58_g denotes the density of the genes

with different mean expression and g5 denotes a
t-distribution with non-centrality parameter & .

We shall comment on this choice of f; at the end
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of this section. This model only has two parameters
to estimate p and &. Maximum likelihood
estimation (mle) could be accomplished using the
Expectation-Maximization (EM) algorithm,
however it is hard to work with the density of the t-
distribution. Instead, we use a modified version of
the EM-algorithm with an ad-hoc M-step. The

idea is that for each gene, the mle of &; is simply
t; by the invariance property of the mle (replace

M; and U, with their mle's, the mle 0[2 is
approximated by its unbiased version, the pooled
variance estimate). One ad-hoc estimate of & could

be the average of |t,-|. A better estimate uses the
weighted average > ;W; |ti|/2i w; where w; is
the posterior probability of coming from f; given
t; . For the M-step this weighted average was used,

calculating the w; for one iteration using the

estimates from the previous iteration as true
parameters. For the prostate data, the proportion of

t-values with |tl~|>2 and the average of the

absolute t-values (i.e., (|t1|+...+|tn|)/n) were

used as initial values for p and &, respectively. The
iterations were stopped when the change in both &

and p was no greater then 107, Convergence was

attained in 174 iterations, giving b =2.473228 and
p =0:04612997.

FIGURE 3

Asymptotic distribution theory for contamination models
Histogram of 7 - values corresponding to the prostate gene-
expression data
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04

- s
/7/*}‘* ..... fy

Density
0.2 0.3
1

0.1

0.0

t-values

Figure 3 shows a histogram of the #-values with the
estimated densities superimposed. It can be seen

that the central t-distribution f, (dashed line) does

not fit the #-values very well since the t-values have
a heavier tail. The mixture of the two non-central t-

distributions with parameters & and -0, f
(dotted line), help to explain the tails. When these
two distributions f; and f; are mixed with p as

the proportion for f;, then the fitted distribution f

(solid line) fits the histogram quite nicely using only
two parameters (compared to fitting 8 parameters).
To do the LMP test, we need to explore the

distribution of the density ratio f;/f; , and this is

quite hard to do with the non-central t-distribution.
To work around this, suppose that the variance of
the ratio is finite and just use the regular central
limit theorem. A random sample of one million
values from a central t-distribution with 100 degrees

of freedom was generated and the ratio f;/f; was

calculated for each value, where the sample
variance was 102.2010. This estimate of the

variance of f;/f, is assumed to be the true
variance. For the prostate data
fo (1)

the variance of f,/f, is 102.201. Then, if all

=27186.5 and assume that

observations are from f, and the observations were

independent then Tn/\/na2 =34.62255. When
compared to the quantiles of a standard normal
distribution, this value indicates very strong
evidence that some of the genes have different mean
expression values for tumor and non-tumor patients.
Next, we created the sets D;, as in (2.2), and

calculated their empirical posterior probabilities
using an expression similar to (2.1), i.e.,

P(D,|t,,.t,) (1 ‘P*)niil’*jﬂjew Jolt) M jen, /i (1))

Figure 4 shows the log of these posterior
probabilities, giving a maximum at 139, indicating
that 139 genes have significant difference in their
expression number. Since Efron (2007) found 51
anomalies, the LMP test is used to verify the

hypothesis  Hy : p = p, =51/6033 =0.00845. In
this case the test statistic is
d S - J
T, =3 ¢

=5081.583
i=l (1 ‘Po)fo +pofi

Since T, is the sum of bounded r.v.'s (Proposition
4.1), the regular central limit theorem can be used to
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decide on a rejection region. As before, we
simulated one million samples from a central ¢ and
another million from the noncentral t with
noncentrality parameter & =2.473228 (using —&
gives the same variance). Then we calculated the

average of these two, weighted by 1-p, and p,
respectively. This gives a sample variance for

(/; -fo)/((l-po)fo +pofi) of

0’ =1820424.  So, Tn/\/n02=15.33367,

which is quite significant when compared to
quantiles of a standard normal distribution.
Therefore, we concluded that the proportion of
anomalies is greater than 0.00845.

FIGURE 4
Asymptotic distribution theory for contamination models
Log-probability of the number of "anomalies" corresponding
to the prostate gene-expression data
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Since the use of #-values gave 139 anomalies, we
now repeat the exercise from the previous paragraph
to test the hypothesis

Hy:p-= Py =139/6033 =0.02304 . The estimated

variance of (fl —fo)/((l—po)fo +p0f1) is
9.111389. The test statistic is 7, = 1779.638,

n

which normalized gives 7, /\/ no’ =7.590539 .

This indicates that the proportion of anomalies is
greater than 0.02304. This suggests a better method
to identity anomalies is needed, possibly one based

on a cutoff for (fl —fo)/fo .

It is worthwhile to mention that the independence
assumption between genes may not be realistic.

With regard to the choice of f) =.5g¢+.5¢ s,

note that for this data one is only interested in
determining what genes have different expression
numbers and not the direction of the difference.

Thus, one could consider |tl-|. For this symmetric
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situation  f;
anomalies and what we would recommend for
future data analysis. This Choice worked well for
the original data set, but the biological justification
for equal proportions of positive or negatively
expressed genes is not clear to us.

seems appropriate to model the

Appendices

The first appendix simply states some stable
distribution results used in Section 4, while the
second appendix covers the asymptotics for the
standard case when the parameters of a mixture
model are in the interior of the parameter space.

A Generalized central limit theorems
The lemmas in this section are well known results

which give us the limiting distributions of ) Z;,
properly normalized (see Geluk and de Haan, 2000,

and the references therein). A stable distribution
with parameter @, 0<a <2, is defined by its

characteristic function ¢, (t) given by

@ (1) = exp {—za[msign(t)tan(%) (1 1-0*-1)}}
+if tan (%)

(A.la)
when a #1 and by

@ (1) = exp| | 1visign(1) Z1ogl |si24r(1)
(A.1b)
when a =1. I’ ( 1) is the derivative of the gamma

function evaluated at 1 (the negative of Euler's
constant). For @ =2 the stable distribution
becomes a normal distribution with variance 2.

To calculate quantiles and probabilities for this
distribution one could use the R functions gstable
and pstable (from package fBasics) setting the
parameters as alpha = a, beta = 1, gamma = 1,

delta = tan(mT/Z) and pm = 0. In the case of
a =1 the parameter delta should be set to
2r'(1)/m ~ —0.3674669. Table IV shows some
quantiles for selected values of o .

Let Z,,...,Z, be iid with P(Zl > a) =1 for some
finite a. We say that Z; is in the domain of

attraction of an & -stable law, denoted by Z; € D o

if there exist real sequences a, and p, for which

> (2 -n,)

1
an i=
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converges in law to a stable distribution with
parameter . The following two lemmas give

necessary and sufficient conditions for Z; € D , .

TABLE IV

Asymptotic distribution theory for contamination models
Quantiles of the stable distribution

Right tail probabilities
al| 01 0.05 0.01 0.005 0.001
1| 6.7612 | 13.6373 | 65.653 | 120.7645 | NA
1.05 | -6.3069 | -0.5517 | 40.1627 | 87.9868 | 445.4734
1.1]-05213 | 4355 | 36.8106 | 73.2907 | 330.9228
115 | 11151 | 5.2897 | 31.5672 | 59.932 | 250.189
1.2 | 1.7651 | 53706 | 26.929 | 49.3496 | 192.8381
1.25 | 2.0504 | 51874 | 23.0733 | 41.0467 | 151.2448
1.3 | 21718 | 49181 | 19.8067 | 34.4791 | 120.4426
1.35 | 22118 | 4.628 | 17.2687 | 29.2202 | 97.1814
1.4 2.2089 | 4.3431 | 15.0761 | 24.9537 | 79.2942
145 | 21832 | 4.074 | 132282 | 21.4463 | 65.3058
15| 21457 | 3.8242 | 11.6541 | 18.5251 | 54.1916
1.55 | 2.1028 | 3.5046 | 10.2983 | 16.0605 | 45.2258
1.6 2.0584 | 3.3845 | 9.1171 | 13.9535 | 37.8839
1.65 | 2.0147 | 3.1931 | 8.0759 | 12,1273 | 31.7795
1.7 1.9733 | 3.0195 | 7.1466 | 10.5209 | 26.6205
1.75 | 1.9352 | 2.8631 | 6.3068 | 9.0842 | 22.179
1.8 | 1.9011 | 2.7234 | 55394 | 7.774 | 18.2669
1.85 | 1.8716 | 2.6002 | 4.8357 | 6.5525 | 14.7128
1.9 1.8468 | 2.4931 | 4.2054 | 53942 | 11.3245
1.95| 1.827 | 2402 | 3.6825 | 4.361 7787
2| 1.8124 | 23262 | 3.29 3.6428 | 4.3702

Lemma A.l. For 0<a <2, Z; €D, if and only
if R(z) = P(Z;>z) is regularly varying with index
-a,ie.,

R (tz)

-a
=z

lim 10 (A2)
What are suitable choices for 4, and a,? When
a > 1, the regular variation condition ensures that
E (Zl) exists and is finite, so an appropriate choice
of g ~when 1<a<2 is u, =E(Zl). When
0<a<1 a fitting option is 4, =0.For a =1 a
suitable centering sequence is
H, = jflm(a’o) P(7,<t)dt + j{i:x(o,a) P(Z,>t)dt .
(A.3)
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For an appropriate a let

n’

s =T (1 —a) cos (am/2)

o and

for O0<a<l

m .
s =—F—~————— for 1<a<2. A fittin
@ or (a)sin (am2) &
sequence a, of normalizing constants would satisfy
the condition

limns,P(Z, >a,) =1

n—

(A.4)

Table V shows suitable choices for a, given certain

tail behaviors. Condition A.4 also makes a, an

appropriate normalizing constant for

M =max{Z,,.,Z,} since

P(M”/an Sm) - e—m"”/sa

i.e., the Fréchet distribution.

(A.5)

TABLE V

Asymptotic distribution theory for contamination models
Normalizing constants for some specific tail behaviors

(0 <c<b>0,0<a <2)

Tal behavior as 2 + 50 Normalizng constant
Z-QP(21 > Z) = 0,= (CSQH)M
lfa
AhlgaP( > 1) 0= ( 2 )
NQ
& hgzep -byalog2) Py > o) 4 ¢ 0, = ( \/Eﬂ% exp[bz +hyTogn )

Corollary A.2.If Z, € D, for 1 <a <2, then

converges in distribution to a stable law with
parameter a/2 .

For /2, the normal case, let 4 =E(Z) and

t
h(t) = Iﬂ(z—ﬂ)P(Zl > Z) dz —_f;(z—/,/)P(Z1 < z) dz
and let a be a sequence of real numbers satisfying
. nh (an )
hm—2 =1 (A.6)
h— o an
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Note that if the variance of Z1 exists and is finite

then (r) — var(Z;)/2 as t — oo, in which case

a, =..5nvar(Z;).

Lemma A.3. /(¢) is slowly varying, i.e., regularly
varying of order 0, (therefore 1 = E(Z;) < o) if

and only if
n

)

— Z. -

o 27 -x)

converges in law to a normal distribution with mean
0 and variance 2.

If h() is slowly varying, we say that Z is in the
domain of attraction of a 2-stable law (normal
distribution with variance 2). Table 6 gives suitable
choices for certain tail behaviors with slowly

varying h(t).

TABLE VI
Asymptotic distribution theory for contamination models
Normalizing constants for some specific tail behaviors of
distributions in the domain of attraction of the normal law

(0 <c<ob > 0)
Normalizing constant

0 = ySenlogn

Tail hehavior as 7 = 00 ‘

32P(Zl >4
2;2\/@}9(21 >1)4e e yf("rz\/.5log‘ n

24 logzexp (<2byTogz) PLZ, > 2) | 0, = v“f Snexp [F-+ 2y Slogn]

B Asymptotics for the MLE of a k-point mixture

The next lemma states the asymptotic distribution
for the k-point MLE of the mixing distribution Q
when Q is a discrete probability measure on © with

k distinct mass points, 6’1,...,6’k,

and respective
masses, p,,...,p, . Here we assume that t91,...,t9k

are in the interior of © and that all the masses are
positive and less than 1. The following notation will

be used. Let Q=(91,...,9k), p =(p1,...,pk_1)

and 7 =(,71""”72k—1) :(91""’91(’1’1""’1’1(—1) :
Then,
k
fxn) =1 (x6.p)=1,(x) =2 pifg, (9

k-1
o, () + £ 2,15, ) - 1, )

Let X|,..,X,, be iid from f(x;lz) and let A

denote the mle based on X,..X, . For

ij=1,..,2k -1 let

1 (/1) =cov, (a?hlogf(Xl;n),agjlogf(X1;/7)]

and let / (’Z) denote the information matrix whose

.th .th
L=

entry is [i/' (’Z) .

Lemma B.1. Under suitable regularity conditions,
Jn(3,-n) O B MN(Q,I“ (Q))

Proof. See Lehmann (1983, Section 6.4) regarding
suitable regularity conditions and a proof under
those conditions.

Remark B.2. The "suitable regularity conditions"
alluded to in Lemma B.l1 involve the usual
differentiability assumptions on f (x; g) and
passing derivatives through expectations as well as
the usual assumptions of positive definiteness of the
information matrix. These hold for the examples we
consider here. The main regularity condition that we
need to verify is that

3

0 lo Xy
ﬂ <M, (x);a,b,c=1,2,..,2k -1
ov,0v,0v, abe

abc (Xl)) <

For mixtures these third order derivatives have been
derived in a separate document (See
http://people.clemson.edu/ ~ veraf/docs/ThirdDeriv
ativeEquations.pdf) If p; >0 for i =1,...,k, then
some of the quantities envolved in these third order
partial derivatives are bounded (see Proposition B.3
below). Therefore, a suficient regularity condition is
that the absolute value of functions such as

where E (M

F ) P
ae?fei( ) aglzfgl( ) %fgj (x)
fo, )T S ()T Sy ()T
672 X
51y ) o T, 1) G s ) g e
f@,- (x) fgj (x) f¢9h (x) > f@,- (x) >

30 o, 1) oG fo, () 5 S, ()
fgl_ (x) fgj (x) ’ fgl_ (x)

by functions of X with finite expectation.

are bounded
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The next proposition shows that the derivative of
log f (x; 0, ;_)) with respect to p; is bounded.
Proposition B.3.

fgi (x) _fgk (x)
plfgl (x) +... +pkf‘9k (x)

k=1

,i=1,...

is bounded if p; >0 for j =1,..,k (hence all its

moments are finite).
Proof. Notice that

fgl, (x) _fgk (x) 1 f@i(x)

P1f91 (x) +... +Pkf9k (x) _;i fgi(x)+zj¢i%fgj(x)

1 fHk(x)

P 85005 fo )

Therefore,

ng (x) _fgk (x)

1

<1, 1
pifg (X)+.+pifo (X)| " P Py

The essence of the proof of Lemma B.1 is a
consequence of the following two Lemmas.
Lemma B.4.

-1
dila-) =0, ) "2 o,
Where

n dlog f(Xin)
R 0f-0. (n)= [z:; :1,2,...,21(—1]

- L=l 9,
, and
H, (n) {fW: j,1:1,2,...,2k—1}
i=l
Since HnT(ﬂ) ofi- -1 (IZ) it is immediate that.
Lemma B.S.

-1

Jnlin=n) = -7, () (1(a))” +o

Where 0 0 ff-0.

n

This representation for /), will be needed in the
final lemma.
Remark B.6. Note that if n_‘SJn (Q) converges in

law to a multivariate normal distribution then
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n_qJn (/J) converges in probability to 0 for g >.5,

but convergence may be slow.

We now determine the asymptotic distribution of
the LMP test statistic when parameters in the
statistic are estimated by mle's. To do this we adopt

the following notation. Let & =(QO,Q]) where

6, = (81...6;) indicates the parameters governing
the background and ¢ =(8,...8,) denotes the
parameters activating the spurious observations.

The vector P =( Py El) denotes the vector of

mixing proportions and p = % p1; denotes the
=1

proportion assigned to the spjurious distributions.

Then O =(1-p)Q, +pQ,. The k-point mle of Q

is O =(1—ﬁ)Q0 +ﬁQ0 where Qo and Ql are the

discrete probability measures putting masses at the

mle's of @ = (QO,QI) and the respective vector of

i 2o Py
mle masses are m _[l—fy’ % j If 9, and Q, were

known, then the LMP test statistic for testing
H:p =0 versus H, : p >0 would be given by
— < le -3
7, = £ [10 () )£ R(x,)
i=1\/Q i=1
where v = (Qo’gl’fo’(Pll"“’le-l))' This suggest
using
_y [ fa 3 R($
5, = 3[40, )] re)(x,)
i=1 f [oN i=1
as the test statistic for the more general formulation
of the problem. For each x, let G(v)(x) and

H (v)(x) denote the gradient vector and Hessian

matrix of R(v)(x) at v and assume that the entries
satisfies

‘Hab (g’)(x)‘szvab (x) for ab=12,..2-1

in the Hessian matrix

and for all /_7' in an open neighborhood of 77. Then

a second order Taylor's series expansion gives

R(3)(x) =R (1) (x) +G (v) (x) + (30’

#3250 (3 =) Vo () N, 0

where |ya,, (x) <1 and - is the inner product. So,
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v, =)L ZM( DN (X7)

it £|G, (v) (x;)| and E|N,, (x
all a and b, then

+s, =7 +B(60)(x) -V (-0)" +x,

,)| are finite for

where R O fi- 0. Since v is just a relabeling of

A, it follows from Corollary B.5 that

) t

ST +E(G(v)(xl))-(ﬁj,, (v) (1<v))‘1j *R,
(B.1)

where R O fi- o

Next, we develop the distribution theory for S,

assuming that /, <oo and W, <1. Recall that

fo
T = 1 and
n Z—‘ifQO( )
n dlog f(X;n)
J, ('Z) 2{56’7_/]_1 2,.. ,2k—11 where
le _
E, _—(X]) :/./(v) and
Qo
E [alogf()‘"v)—oj for j=1,2,..,2k-1. Let
v dv,
Jo,
Cop (1) = var, [_(Xl)]’
Jo,
fo dlog f (Xy:v)
o, (1) = ¢ (3] =eon| 20 (x, ), T8 SV 0E)
0/ 70 (fQo : avj
for j=12,.,2k-1 and cl_j(\_/)zl_J(v) for
i,j #0. The matrix C(y) of the <, ( )’s is the
covariance  matrix of the row  vector

(&()ﬁ)’wd =1,2,..,2k - 1]_(5_91 (XI)V]

/. [ [0
. From (B.1) we need the covariance matrix of

61

(;& ( X, ) N/ ( V)J . A straight-forward
Qo

calculation shows that this matrix is ). (v) of

Ulj( ) ’s where

0’0’0 (Z) = CO,O (X) ’ai,j (‘_}) = [lt; (‘_}) for l’.] #0 ’

and the vector

gy =( 0y, (v=2,..2k) =(co ,(v)s=12...2k ) 17 (1)

99,/ (E) =00 (X) for
2k —1. Thus, by the multivariate central

Trow

determines
j=12,..,

limit theorem,

Lemma B.7.
(7, =nrl).0, )17 () B B 2w (0.5(v)

The asymptotic distribution of S, is immediate

from Lemma B.7 and identity (B.1).
Lemma B.8.

Let a =(1,E(G(v)(x1))). Then,
ﬁ(Sn np(v)) O B> N (0,43 (v)a!)

Next, we develop the distribution theory for S,

2, =(fo,(x1)-foo (1) fo, (X)) has

var (Zl) = co, We assume that Z1 is in the domain

when

of attraction of an a-stable law for some 0 <a <2
under v . Let a, be defined as in Appendix A. Note
that n/a,,2 — 0 since var(Zl) = oo,

Identity (B.1) can be rewritten as

ST A8 (o) £

lemma, let b, =nEp (Zl) if

For the next

l<a<2, b, =4, (as in (A3)) if a=1, and

b, =01if 0 <a <1.

Lemma B.9. If Z1 is in the domain of attraction of

Sn=b .
then % converges in
n

distribution to a stable law with parameter o .

Proof. The result follows since v/ / a, = 0.
We now close Appendix B by considering the

an « -stable law,

consistency of the mle at ;. To do this, we
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consider the parameter space P of all discrete
probability measures on O with at most & mass
points. Endow P with the Levy metric and note that
with this metric P is closed. Also assume that

f(x,@) is continuous in &. Thus, fQ (x) is

continuous in Q in the Levy metric. With this
framework, one can apply Wald (1949) proof with
minor modifications (in particular, see Section 4 of
that paper) to show that the k-point mle converges

almost surely to O in the Levy metric, d; , when

Q, obtains. Wald’s parameter space (denoted by

Q in his paper while points in QQ are denoted there
by @ not w) is a subset of a Cartesian product
space but his proof holds for the parameter space P
considered here under his Assumptions 1, 2,

4-6 with his @’s replaced by our O ’s.

Regarding Wald's assumptions with regard to the
problem here, note that his Assumptions 3 and 8

hold since f (x, 9) is continuous in @ (supremums

of lower semi-continuous functions are lower
semicontinuous, and hence, measurable). Also
Assumption 7 holds since P is closed. Note that the

family { f (x, 9)} being identifiable does not imply

that {fQ (x)} is identifable. E.g, mixtures over p of

n-trial binomials with & >2r —1 have an infinite
number of representations. The limiting condition in

Assumption 5 for { f (x, 9)} implies that f (x, 9)

goes to zero as the points in the support of Q goes to
infity or minus infity. This limiting condition lets
Wald truncate the parameter pace to a bounded set
which is then compact because of Assumption 7.
Here the limiting condition implies tightness of a
subset P' of P, and hence, compactness of this
subset. The essence of Wald’s proof is to use the
compactness to get construct a finite open cover,
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1,1 1

02 Lyl

for P'. Without loss of generality,
assume Q0 e[o but not in [j for j=12,..,m.

This cover, defined for p >0; is done in such a
way that
1.d, (01,0,) < p whenever O, and O, are in the

same [ .,
J
2.
EQ0 sup{long(x):QEIO} > EQ0 sup{long(x):QEIj}
forj >0,
EQ0 sup[ log fQ(x):QEIO}
SE % sup[ log fo(x): for Qouside the cover}

for O outside the cover g.
It follows from the strong law and (1-3) that

P(limd(0,,0,) <p) =1 where O, s the

k-point mle. Since o is arbitrary, Q,  converges

almost surely to 0, .
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