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UNCOMMONLY BEHAVED LIPSCHITZ DOMAINS

Salazar Jorge'

Resumen. E£n este articulo, queremos exhibir un dominio uniformemente Lipschitziano, tal que la interseccion del dominio
con cualquier bola centrada en el origen (el cual es un punto de la frontera) no es un dominio Lipschitziano.
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Abstract: This paper is about exhibiting a uniformly Lipschitz domain with the following property: The
intersection of the domain with any ball centered at the origin is not a Lipschitz domain.
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1. INTRODUCCION

A Lipschitz Domain is an open connected set
in n—dimensional Euclidean space whose
boundary is locally expressed as the graph of a
Lipschitz function. Lipschitz condition on the
boundary is a natural assumption of regularity,
much weaker than differentiability, yet strong
enough to allow the study of important
properties like continuity at the boundary of
solutions to Dirichlet type problems,
associated  with many linear and nonlinear
partial differential equations. A very important
result in this context is the existence and
uniqueness  of minimal positive harmonic
functions having a “pole” at any given
boundary point, proved by Hunt and Wheeden
[6] (1968). The boundary behavior  of
harmonic  functions where studied from
different perspectives by Ancona [1] (1978),
Benedicks [2] (1980), Jerison and Kenig [7]
(1982), Wittman [8] (1985) among others.

Working with the boundary at different scales
(in blow up techniques for example), we need
to localize and study the behavior of
solutions on small neighborhoods around a
fixed boundary point. To do so, it is customary
to consider intersections of the domain with
small “cylindrical neighborhoods.” These kind
of neighborhoods are used to preserve the
Lipschitzian character of the original domain.

!Jorge Salazar. The author acknowledges the
support from the Prometeo research program
of SENESCYT (Secretaria Nacional de Educacion
Superior, Ciencia y Tecnologia del Ecuador).
Permanent address: Dep. de Matemadtica,
Universidad de Evora, Evora -Portugal.

E-mail address: salazar@uevora.pt

Prometeo address: Escuela Superior Politécnica
del Litoral, ESPOL, Facultad de

Ciencias Naturales y Matemdticas, Campus
Gustavo Galindo Km 30.5 Va Perimetral,

P.O. Box 09-01-5863, Guayaquil, Ecuador
E-mail address: jsalaza@espol.edu.ec

The downside is the need for choosing a
hyperplane to express the boundary, locally, as a
going to be the axis of the cylinders. Since the
notations become cumbersome, we can always
ask whether we can work with regular balls.

Unfortunately, the intersection of a Lipschitz
domain with a ball may fail to be a Lipschitz
domain, as one can easily provide examples.
Nevertheless, we can still hope to work with
balls, since what is needed in most problems is
the existence of a sequence of balls with radius
going to zero, whose intersection with the
domain is a Lipschitz domain.

Even this weaker requirement is not always
guarantied, but an example of a domain
exhibiting such behavior is rather uncommon.
Therefore, we think it is important to provide
an explicit example of a domain in which the
Euclidean balls produce all bad intersections
and the cylindrical neighborhoods are really
needed.

This paper is about exhibiting a uniformly
Lipschitz  domain with the following
property: The intersection of the domain with
any ball centered at the origin is not a Lipschitz
domain. This construction is rather elementary,
but we hope that the reader will find it
interesting and elucidative.

This small contribution is dedicated in
memory of Kai Lai Chung, a fine
mathematician and mentor of many generations
of mathematicians who learned Probability from
his books, specially the very well known “A
Course in Probability Theory” [3]. His book
“Green, Brown and Probability” [4] (1995) tells
the story of the ‘symbiosis’ between Analysis
and Probability from Chung’s mature
perspective.  Starting with Green’s work of
1828, on the mathematical theory of Electricity,
Chung takes the reader in a tour through
random  processes, random time, Markov
property and he goes on discussing deeper
results and showing what comes from
Analysis and what is genuine Probability
thought. Chung, very elucidatively, explains the
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trouble with irregular boundary points with
respect to the classic Dirichlet problem and
he asks this question about using spherical
instead  of cylindrical  neighborhoods. 1
acknowledge him the privilege of some
insightful discussions on this and other matters.

These themes are at the crossroad between
Analysis and Probability. The bridge was led
down by Shizuo Kakutani’s solution of the
Dirichlet problem by probabilistic means in
1944, which is one of the most elegant theorems
showing the interplay between Probability and
Analysis. A huge development came as a result
and the book by J. L. Doob [5] (1983) gives a
good account of it.

2. THE BASIC TWO DIMENSIONAL
PROFILE

In this section, we construct a plane domain,
given as the subgraph of a uniformly Lipschitz
function, and find a sequence of discs, centered
at the origin, with diame- ters going to zero,
such that the intersection of any of those discs
with the domain fails to be a Lipschitz domain.

Consider the function defined by:

2.1) f(r)=arsin(BIlnr),vr >0

Extended by 0 at the origin. The constants a
and  will be chosen later.

Note that f is uniformly Lipschitz in [0, oo[. In
fact f'is Lipschitz continuous at 0 and

(2.2) f() = arsin(BInr) + ar cos(BInr),r >0

Is bounded.

The domain D es the subgraph

D =(x,y) €R%y < f(lx])

We denote by Bo the disc of radius 9,
centered at the origin, and by Q3 the connected
component of D N B , having the origin as a
boundary point.

Let us call singular point of intersection any
boundary point (x, y) € 0Q5 , where the
Lipschitz condition is not satisfied.

Since the minimum of two Lipschitz
functions is again Lipschitz, we can not find
singular points of intersection in the upper
semi-circumference. A cusp like config- uration
(where the Lipschitz condition fails) may occur
at a point where the graph of f touches the
lower semi-circumference, and both tangents,
to the graph and to the circumference,
coincide. i.e.

1

(23)y = (=62 —x*)z = f(Ix])

And

24 55 = f'(xD)

There are of course other conditions to be
verified by the singular points of inter-

section, namely: a) The graph of f can not be
below the lower semi-circumference
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Near the point of intersection, otherwise the
point is not in (D N By ). b) The cusp must be
part of Qs and not in a separate component.

From equation 2.3, we obtain the radius of the
circumference which intersects the graph of f,
at (x, f|x|), for any given x. i.e.

(2.5) 6% =x* + f(|x]

By multiplying 2.3 and 2.4 side by side, we
have f f 0 = —[x|, for any abscissa x of a singular
point of intersection. Then the abscissas of
singular points of intersection are singular
points of the right hand side of 2.5. In fact,
differentiating 2.5, for x = 0, we get

(2.6) 2x + 2ff" o ﬁ

Which is 0 if x is the abscissa of a singular
point of intersection.

Using the actual expression of f (given in 2.1),
equation 2.5 becomes

(2.7) 6% =x%e(1+ a?esin[2 (BIn|x]),

Since the right hand side of 2.7 is a function of
X,, we can simplify the calculations by
considering &, (let’s call it g) as a function of t
=x2 . That is, we put

(2.8) g(x) = 7% (1 + a? * sin? (glnr),r > 0.

Now, we differentiate g with respect to t to
locate its singular points.

(2.9 g(@) =1+ a? ¢ sin? (gln r) +

2p i (B B
a’f sin (Eln T) * CoS (;ln ‘r)

Using the well-known trigonometric identities

(2.10) sin(f) = 2 « sin (g) e Ccos (g)
and cos(@) = 1 — 2 sin? (9),

2
Equation 2.9 becomes

Q2.1 g'= 1+a72(1—cos(ﬁlnr))+
a;ﬁ sin(B In 7).
Choosing
_ 2 _ 2cos¢
(2.12) p =tan¢ and a* = Tcosd’

for some fixed ¢ € ]0, = [, and multiplying
equation 2.11 by 1 — cos ¢, we get

(2.13) 1—cos(¢p)eg'(t)=1—cos(tan¢
Int) e sing

Using the identity

(2.14) cos(p + ) = cos(¢) » cos(yp) —
sin(¢) ¢ sin(y)

We obtain

(2.15)
cos(tan g Int + ).

Since 1 — cos @ > 0 and cos(0) < 1, for all 0 €
R, equation 2.15 shows, in particular, that g,
and a fortiori = §, is a non decreasing function
oft.

All the requirements on the singular points of
intersection are greatly simplified by this fact,
since it means that any circumference (of any

1-cos(¢)eg'(m) =1~
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radius & > 0), centered at the origin, intersects
the graph of fexactly twice, at

(£v5 @)

Where t > 0 is the unique solution of 2.8 for a
given § (g=062).

This also implies that D N B is connected.
S0,Q8 =D NB§,and if f (Vr) <0,

(2.16) Qs = {(xy) € R% 117 <
v, —(8% = x2 <y < f(IxD)}

By 2.15, the singular points of g are the
solutions of

(2.17)  cos(tang eInt + ¢) = 1.

Then, the singular set of g is implicitly defined
by

(2.18)
—2km,k €Z

(The choice of the negative sign in the left
hand side is just a matter of taste.) Explicitly,
2.18 defines the sequence

(¢p+2km)

(2.19) 7 = exp (- o
which tends to 0 when k — oo.
At those points, the function fis given by

tangpelnt+ ¢ =

),keZ

2cos¢p (P
P = o+ [T sin(z )
(220) = (-D**1e [1,0 %.Sin@)

and the radius is
(2.21)

5 =T+ cospexp(-225) ke

As noted above, we obtain a cusp like
configuration (two in fact) for each singular
point for which f takes a negative value.
Then, the singular radii are those for which
k is an even number. i.e.

(2.22)

8y =+/1+ cospexp (— f::,kg)’k EZ

In other words, the intersection of D with any
disc of radius 82k, k € Z, centered at the origin,
is not a Lipschitz domain. Note that we have
not chosen any particular value for ¢.

3. MAIN EXAMPLE

The main example is constructed in R? , using
the previous two dimensional profile. We think
of the function f (see 2.1) as a radial function on
the plane and we make it to depend on the angle

as well, introducing a “phase.” In polar
coordinates,

3.1)

4 — e 2cos¢v. . .
fr,0)=r }—l—cosﬁ sin(tanf eInr + 0 +
®),
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The uniform Lipschitz property is still

satisfied by f, since

(3.2)

5F G .

5, 0) = —msm(tan ¢lnr+6+
),

And

(3.3)

1 5f 0y = 2cos@ ) nr+6

g (r,0) = I _Cosecos( an¢gInr

+¢),
Are bounded.

The domain D is, in cylindrical coordinates,
given by
D={(r6,2) e R* x[02n] X R;z < f(r,0)}

And Bsg now denotes the ball in
3—dimensional Euclidean space, of radius 9,
centered at the origin.

The phase 6 introduced in the function sinus
does not disturb the monotonicity (with respect
to 1) of the function

5 _ 2cos¢p ., stan
g(T,G)—T(1+1_COS¢sm ( > lnr+9))

(34)= 1—c:>s¢ (1 —cos ¢ cos(tan g Int + 20))
Since
(3.5)
ag I
;(1, 0) = Teoss (1 —cos(tan¢Int +
20 + ¢)) = 0.

Then, for any & > 0, the graph of f intersects
0Bs , only once for every 0 € [0, 2x] fixed, and
D N Bg is connected.

By 3.5,

(3.6) Z—f(r,@) =0 tanplnt+20+¢ =
—2km, k€ Z

Then, the singular radii are given by

_ _ P+20+2km

3.7 r(0,k) = exp( o
Z,0 € [0,2r]

Evaluating f at these points, we have, for k €
Z and 0 € [0, 27|,

(3.8)

f(r(6,k),6) =
_1\k+1 _ $+26+2km 2cos¢p . (P
-1 exp( 2tan ¢ )\’1—cos¢51n(2)'

For k even, 3.8 gives a negative value. i.e.
f(r(6, 2k), 6) <0, for all k € Z. Then, the points

),ke

3.9
(r(e, 2k),9,f(r(9,2k),9)),k €7,0 € [0,27]
Are the apex of a cusp like region inside D N
Bs(o,x) » Where

(3.10)

7,0 € [0,27].
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Finally, note that 6 + 2kn gives us just about
any real number as & runs in Z and 0 in [0, 27].
The same is true for

(3.11) In(/T+ cos¢ —%:‘:‘”.
Then, the expression
¢+20+4kn
(3.12)  JT+cosgexp (—W),k €
7,0 € [0,27]
Produces any positive real number.
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Therefore, the intersection of D with any disc
centered at the origin has a boundary point
where the Lipschitz condition fails.

Since the value of ¢ was left unchosen, we
actually found a continuous, one parameter
family of domains with the claimed property,
as ¢ runs in [0,%] and o and f vary
accordingly.
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