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UNIFORMLY CONTINUOS SUPERPOSITION OPERATORS ON
SPACES OF FUNCTIONS OF BOUNDED VARIATION DEFINED ON
COMPACT SUBSET OF C

Vivas-Cortez Miguel

Resumen: En este articulo mostramos que si la funcion generadora h de un operador de superposicion H, es continua en la primera variable y
si H envia un subconjunto del BV(s), el espacio de las funciones de variacion acotada sobre subconjuntos compactos de C (el plano
complejo), en otro espacio especifico entonces la funcion generadora h es afin en la variable funcional.
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Abstract: In this paper we show that if the generating function h, of a uniformly continuous superposition operator H, is continuous in the
first variable and if H sends a range-restricted subset of BV (o), the space of functions of bounded variation on compact subset ¢ < C, into
another such space, then the function h must be affine in the functional (second) variable.
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1. INTRODUCTION 2. NOTATION AND BASIC
DEFINITIONS

Let o, M and N be arbitrary non-empty subsets. In the first place we present the definition of
Denote by Mo the set of all functions from o to M. variation throughout a curve as it was introduced by
Given a function h: ¢ x N — M, the map H: No Ashton in [2] and then we present the definition and
— Mo defined by Hf (x):= h(x, f (x)) for allx € ¢ main properties of the notion of bounded variation
and f € No, is called the superposition (or for complex valued functions defined on a compact
Nemytskij) operator generated by h. subset ¢ of C (see [4]).

This operator plays an important role in various Throughout this section ¢ denotes a non-empty
mathematical fields, e.g. in the theory of nonlinear compact subset of C.
integral equations, and has been studied thoroughly. A curve, or path, in C is a continuous function
Perhaps, the most important problem concerning the v : [0, 11 — C. The length of a curve vy, denoted by
theory of superposition operators, is to establish L(y), is the supremun of the lengths of all the
necessary and sufficient conditions under which polygonal that can be inscribed in the curve (that is:
such operator maps a given function space into whose vertices lie on ).
itself. These conditions are called acting conditions As usual we will denote by yl + y2 the
(e.g., (non-linear) boundedness, continuity, local or juxtaposition of the paths y1 and 2
global Lipschitz conditions, etc.). On the other such that y1(1) = y2(0); that is
hand, being superposition operators the simplest 1
operators between function spaces, another vy (2¢) if 0<it< <
important problem, is to determine if a certain given (72 + 12Nt} _ I | =
operator, that acts between some given function (2t —1) f 5<t<1L

spaces, can be redefined via the notion of
superposition, thus, e.g., it has been established that

Definition 2.1. Let y b th. We will
for some function spaces, any locally defined ¢ nition ¢ty pea pa o Wi sy

. Lo that j_ is a partition of y overc if zi €
operator is a Nemitskij operator (cf. [8], [9] and 13 Hi= P ¥
[6]). We refer the reader to [1] in which most of the for all 1 and if there is a partition
basic facts and results concerning superposition sty € A(|0.1])  suchthat _. , foralli
operators are exposed. The set of all partitions of y over ¢ will be denoted
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of C, f: 6 — C and let y be a path in . The
variation of f throughout the path vy is defined
as:

n—1

Var (f,v,0) =cVar(f,v) = sup Z flz541) — flz5)]-

{= €A ()
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In the following proposition we list some basic
properties of the functionals of c-variation. A
proof of these properties can be found in [2].

Proposition 2.3([2]). Let 61 S 62 be non-
empty, with ol non a singleton, compact
subsets of C, f, g : 62 — C, vy € C([0, 1]) and k&
€ C. Then

i) cVar(f +g,7) < Var(f,y) +cVar(g, 7).

(ii) For v € C( [0 1]), i cVar(f,y) < oo then f is bounded over the set

{zeC:z=1(t) for some t € [0,1]}.

(iii) cVar(fg. 9) 5 [IF eV ar(g,7) + 9]l wcVar(f,7).

(iv) cVar(kf,y) = |k|cVar(f,7).

(v) If v =1+ 72 then
(a) cVar(f,7) = cVar(f,y1)+cVar(f, 1) and cVar(f,
(b) Var(f,y,0) < cVar(f,v,09).

(c) Let f : ¢ = C, y1,7 € C([0,1]) and suppose that y; = 9. Then

Var(f. ) = Var(f. )

Recall that a polygonal (path) is a curve y : [0,
1] — C for which there is a partition t0 < t1 <
t2 < - - - < tn such that y(t) is linear on each
subinterval [tk, tk+1]. The range of y, when t
runs through [tk, tk+1], is called a side of the

poligonal y and it is denoted by [y(tk), y(tk+1)].
The set of all polygonal that meet o will be
denoted as (o) or simply by 1.

Definition 2.4([4]). Let f: 0 — C. The variation
of fon ¢ is defined as

. Var(f,v)
Var(f,o) :=su dadiadl £l
W) =
The set
BV(e) =BV(g,C)={f:0 = C:Var(f,o) < +o0}.

will be called the space of (complex) functions
of bounded variation on c.

Remark 2.5. Notice that if Range(y) N o= @,
then, without lost of generality, we may
assume that both y(0) and y(1) are points of o,
since otherwise we can re-parameterize y such
that O is the smallest of the entrance points of y
over ¢ and 1 is the largest of the exit points of y
over c.

A proof of the following Lemma can be found
in [4].

Lemma 2.6([4]). If Var(f, 6) < +oo then f is
bounded in ©.

As a consequence of the previous lemma it
follows that the function f(z) :=1/z is not of
bounded variation on any compact set that
contains zero.

) < Var(f,).
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Next we present some properties of the
variation functionals. A proof of them may be
found in [4].

Theorem 2.7([4]). Let o be a non-empty
compact subset of C, f, g: 0 — C and k € C.
Then

(1) Var(f,o) =0 if and only if f is a constant function.
mv r(f+_,' o) <Var(f,o) +Var(g,0).
(i) Var (kf,o) = [k[Var(f,a).

(iv) Var (fg,0) < || flleoV ar (g,0) + [lgllocVar (£, ).

Theorem 2.7 guarantees that BV (o) is a linear
space. Next, we define the functional

IFll8viey =1 £ll

(2.1) +Var(f,a).

On BV(c), where, ||-||c is the well-known sup-
norm. Also, from Theorem 2.7 it follows that
|'|lsv(oy defines a norm on BV(c) and it can be
shown that, in fact, it is a Banach algebra with
respect to this norm (see [4]).

3. MAIN RESULTS
To prove our main result, we will need to prove
the following results.

Lemma 3.1. Let QESC be a convex set such that

0 € Q, and let f: Q — C be a solution of
equation.

: 21+ 29 fl=1) + f(=2)

(3.1) f( 5 ): ) "
Such that

(3.2) f(0)=0.

Then, for every z € Q and n € N,

(3.3) f (g—ﬂ) = ,)Tf( ).

Proof. Take an z € Q. Since is convex,% (z+
0) € O, and by (3.1) and (3.2).

B (240) _f@+10) _ ()
an’B) - 45 aa m s

Thus (3.3) holds for n = 1. Assuming it true for
ann € N, we have

And by (3.3) for n and (3.4)
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L 1 z o
£ (z=) = 3o (3) = s )
Induction completes the proof.

Lemma 3.2. Let € C be a convex set such that
int 6= @, and let 1 — C be a solution of
equation (3.1). Fix an z0 € int, and define the
function fy: —zy — C by

(3.5) folz) = flz0 +2) — f(z0).

Then there exists a unique function f;: C — C
satisfying equation (3.1) in C and such that

fi(z) = fo(2)

Proof. Function (3.5) is defined for z € Q— z,.
Firs we verify that f0 satisfies equation (3.1) in
Q — z,. For every z,, z, € Q — z,, we have 7, +
Z1, 2o + 22 € Q, and by (3.5) and (3.1)

fo (:1_;/:2) f(20+¥) — f(=0)

_ f(zu+:1;zo+22)_f(m)
= Sl +2) + S0+ 22) — f(zo)
= 3 Lfe0+21) — o)l + 5 [f(e0 + 22) — £zo)

2
1
EEfO(Zl) + fol=a)]-

(3.6) for ze)—z.

Also, it is easily seen that 0 € Q — z0 and by
3.5
(3.7) fo(0) =0
Now put 0 and n=2n 0, n € N. If X € n, then z
2n €0. O is convex, just like, and 0 € O,
whence z2n+1=12hz2n+0i € 0,and z €
n+1. Thus,

3.8) Q,C0,.,. neNuio}.
Also, 0 € int , since 7z, € int Q. For every z €

C we have limzin = 0, whence it follows that
mn—o0o

there exists an n € N U {0} such that zin € Q,,
whence z € Q,. Hence

o0
(3.9) |Jo.=¢.
n=I{}

Define the function f;: C — C as follows:

(3.10) filz) =2 F, (2—) if 229, ncNuUoL
It is easy to check that whether definition
(3.10) is correct. We must verify that it satisfies
equation (3.1) in C. Take arbitrary z1, z2 € C.
By (3.9) and (3.8) there exists an n € N U {0}
such that z,, z, € Q,.
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23
= € 0.

2 z1 + 2o 1 /2 za 71 +
Hence Ertio € Oy, and T == (2_:: + 2_") € Qy, whence

L 2
f](;];;sg) Qzlfn(ﬁlglil:a)
7 [3 () + 36 ()]
i .

Now,

Relation (3.6) results from (3.10) for n = 0.

To prove the uniqueness, suppose that a
function f, : C — C satisfies equation (3.1) in
C and fulfils the condition.

(3.11)

fa(z) = folz) for =z €0 — 2.

By (3.11) and (3.7) £5(0) = £,(0) = 0, and hence,
by Lemma 3.1, f; (&) = 5= f2(2). forz € C, n
€ N U {0}. Take an arbitrary z € C. By (3.9)
there exists an n € NU{0} such that z € Q,,
whence zi" € Q,. Thus we have by (3.11) and
(3.10)

falz) =271 (?) =2"fo (?) = fil=z).

Consequently 2 = fl in C.

Lemma 3.3. Let a function f: C — C satisfy
equation (3.1) and relation (3.2). Then f is
additive.

Proof. We have by Lemma 3.1 for arbitrary z,,
V4 eC.

o Sz) + f(22)

fe';1+:2]=2f(al;':z)=2 5 =|f(=1) + f(z2}),

i.e, fis additive.

Theorem 3.4. Let Q € C be a convex set such
that int(Q2) #@, and let f: C—C be a solution of
equation (3.1). Then there exist an additive
unction g: C — C and constant a € C such that

(3.12) flz)=glz)+a for zefL

Proof. Fix an z, € int and define the function
fo: (2 — zp) — C by (3.5). By Lemma 3.2 There
exists a function f; : C — C satisfying equation
(3.1) and condition (3.6). Hence by (3.7) £1(0)
= f(0) = 0. By Lemma 3.3 f} is additive. For
arbitrary z € we have z — z0 € Q — z,, whence

y (3.5) and (3.6)
flz) = flzo + (2 — z0)) = folz — z0) + f(20) = fi(z — 20) + f(z0).
Since fj is additive, we get hence

(3.13) f(z) = fAlz) — filzn) + F(za)
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Put g = f}, a = f(zy) — f1(z0). Relation (3.12)
results now from (3.13).

Remark 3.5. Given y € C([0, 1]) and z1 = y(t)),
Zy = 'Y(tz) we will write Z, < 7o if t < t.
Analogously is defined z; > z,.

Remark 3.6. Clearly, if f € BV (o), {0} then Var (” f“f -'T) <L
flisvie)

The hard work is now accomplished, and we
have everything we need to prove the main
result.

Theorem 3.7. Let 6 € C be a compact subset,
let C € C be a convex set with non-empty
interior and suppose that the generating
function h: ¢ x C — C of a superposition
operator H, is continuous in the first variable. If
H is uniformly continuous and if H sends the
set RC = {f € BV (o) : f(c) € C} into BV (o)
then there are functions A,B : 6 — C such that

hiz,w) =Alz)w+ B(z). we C.

TEOT

Moreover, if 0 € C then B € BV (o).
Proof. The proof will be divided in three steps:

Step 1. First of all we prove that if f, g € R¢
then |(Hy — Hg)(z) — (He — Hp)(2)| is bounded
forally € '], and z, "z € y([0, 1]). Indeed, since
H is uniformly continuous, its modulus of

continuity operator w: [0,40] — [0,+x0]
satisfies
(3.14) IHf —Hallsv(y = wlllf — gllBv(a))s

forall f, g € Re.

Hence, from (3.14) and Remark 3.6 we have

Hf—Hg )

v ( Hf—Hg “Hf = ngiﬂ-'m )
ar [ ——— T
w(llf = gllpvie)

=t T'm'( ~ . s
117 —Hollpv oy wIf — gllaviay)
1Hf — Hallsvio) ., ( Hf—Hg )
< —Var - - Jr| <1,
= AT —dlsve) o \THT = Hallavie

This means that

3 Hf—Hyg
ceVar W Yy
WS — 9llgy (s, : .
) - <1 forall veT
Ak
Which, in turn, implies that
Hi—Hg Hf—Hg - X
(z) — (2)| £ E(y forall ~eT, zze~([0,1]),
w(llf —gllavn) : w(llf — gllavs) g Sl foew € €1

or, equivalently,

(3.15) |(Hf — Ha)2) — (Hf —Ha)E)| < wlllf — gllpv(s))E(7)
forall v €T, =2 € 7([0,1]).
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Step 2. Now we will show that the generating
function h is also continuous in the second
variable. For arbitrarily fixed z € o, by (3.14)
and (3.15), we have

IH(f1)(z) — H(f2)(2)]

|h(z, 1) — h(z,30)| =
= |(H(f1) = H(f2)(2)|

< H(A) = Hf2) ]l
< H(A) = H{L) By
< w(llfi — fllaviey)
= w(ly — yal).
Step 3. Here we will show that h satisfies the
Jensen functional equation in the second

variable.

Let y € I' and let z1, z2 € y([0, 1]) be such that
z1 <72 (see remark 3.5). Define the function

[ D if 9y(0)<z<2n
gilz) =1 0%31] if zp<z<z
1% | if z<z<q(1).

Now consider y;, y» € C such that y; # y, and
define two auxiliary functions as follows:

1
filz) = 52— w) +un+y

1

fa(2) = 5Im(2)(mn — o) + 2]

Notice that
fi(z) — fa(2)

and hence Var(f; — 5, 6) = 0.
On the other hand

11—y

2

filz1) = %[?}-;-En)(m —y2) +y + | = #
filz) = %[@«.(32){3’1 —¥2) + + ] = w1,
frlzn) = %[q‘.(31){?}1 — ya) + 2y = o,

fo(z) = %[fh(ﬁg){yl —ya) + 210 = o _; o4
Therefore



(3.16) Hfi(z) = h(=, filz)) =h (.:].—f“i”)
(3.17) Hfilza) = h(z, filz)) = h(za, 1)
(3.18) Hia(n) = hz, falzn)) = Bz, )
(5.19) Hfs(za) = hiza, folzm))=h (z@)

Thus, by (3.15) it follows that if y is the line
segment [z1, z2],

|(Hfs = Hf2)(21) = (Hfi — Hfa)(za)|
|(Hfy — Hf2) (=) — (Hfi — Hfa)(za)]

w([lfi — follavioy )E(y)
w(lys — yal) ().

1A 1A

Hence,

[Hfi(z1) = Hfalz1) = Hfi(za) + Hfa(z)] < wllyn —w))i(y)
Or

|21, fi(21)) — h(z1, fa(21)) — B(za, filza) + h(za, fo(22))] < w(lys — yal)E(7)
This, by virtue of identities (3.16) through
(3.19) implies.

‘h (q@) — Iz, y2) —h(zo.n) +h (_\L}yz)‘ < wlly — yal)E(y)

Making now z; — z,, the continuity of ® at
zero and the continuity of h in the first variable
imply that (since £(y) — 0 as z; — z,)

Qh (3-3,

Thus, as claimed, h satisfies the Jensen
functional equation in the second variable.

Y1+
—

) — h (20, y1) — Bz, yo) 0.

From the continuity of h in the second variable
we deduce, by Theorem 3.4, that there exist a
additive function A(z2) : C — C and a complex
number B(z2) such that

M.VIVAS
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(3.20) h(za,w) = Alzo)w+ Blz), w e C.

Since (3.20) holds for all z2 € o([0, 1]) we
conclude that

(3.21) hiz,w) = A(z)w + B(z). wel,z

M

a.

Finally, notice that if 0 € C, then, by taking
y=0 in (3.21), we must have h(z, 0) = B(z), for
all z € o, which implies that B € BV (o).
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7. CONCLUSIONES:

En este articulo damos condiciones sobre el
operador de superposicion H, definido sobre un
espacio de funciones de variacion acotada sobre
subconjuntos compactos de C bajo las cuales la
funciéon generadora h es lineal en la variable
funcional.
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