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SOLUTION FOR INHOMOGENEOUS SECOND ORDER ELLIPTIC EQUATIONS IN

CLIFFORD-TYPE ALGEBRAS
SOLUCION PARA ECUACIONES ELiPTICAS DE SEGUNDO ORDEN NO HOMOGENEAS EN ALGEBRAS DE TIPO
CLIFFORD

Di Teodoro Antonio !, Lopez Alexander?, Vanegas Judith?

Resumen: En el presente trabajo, nosotros usamos dlgebras de Clifford generalizadas llamadas dlgebras de tipo Clifford o
dlgebras dependiendo de pardmetros, para obtener soluciones distribucionales de la ecuacion A= h, donde h es una funcién
integrable y A es conocido como el Laplaciano en el dlgebra paramétrica o simplemente Laplaciano generalizado. Para hacer esto,
nosotros usamos el Kernel de Newton paramétrico K(x,&)y la formula integral de Cauchy-Pompeiu para el Laplaciano
generalizado. También, nosotros discutimos un método para combinar operadores de primer y segundo orden, con la finalidad de
obtener formulas de representaciones integrales para operadores con potencias.

Adicionalmente, nosotros discutimos brevemente otras posibles aplicaciones en fisica, donde la solucion resultante del asociado a
la ecuacion de Laplace modificada se puede interpretar en fisica de la materia condensada, en propiedades de transporte de los
problemas de Dirac Fermion. Nosotros conjeturamos que, nuestras soluciones podrian ser relevantes en el analisis de nuevas fases
exoticas de la naturaleza. Como, aislantes tipologicos donde, la naturaleza de Dirac de los portadores de carga implica nuevas
propiedades fisicas que van mas alla de la descripcion estandar de los portadores de carga convencionales en sistemas electronicos
por medio de la ecuacion de Schrodinger.

Palabras Claves: Soluciones distribucionales, Operadores elipticos, Algebras de tipo Clifford, Formulas de Representacion
integral.

Abstract: In the present work we use a generalized Clifford algebras called Clifford Type algebras o Clifford parametric algebras
in order to obtain a distributional solution for the inhomogeneous equations A = h, where h is an integrable function, A is the
Laplacian in the Clifford parametric algebras or simply generalized Laplacian. To do that, we use the parameter Newton kernel
K (x,&) and the Cauchy-Pompeiu integral formula for the generalized Laplacian. We also discuss a method to combine operators of
first and second order in order to obtain integral representation formulas for higher order operators.

In addition, we briefly mention some other possible physical realizations, were the solutions to the resulting modified Laplace
equation can be interpreted in condensed matter physics specifically, in the transport properties of Dirac fermion problems. We
conjecture that our solutions could be relevant in the analysis of new exotic phases of nature, such as topological insulators were
the Dirac nature of the charge carriers implies new physical properties which go beyond the standard description of conventional
charge carriers in electronic systems by means of the Schrodinger equation.

Keywords: Distributional solutions, elliptic operators, Clifford-type algebras, integral representations formulas.

1 INTRODUCTION

Currently, the  development of new
mathematical tools to describe newly discovered
phases of nature has been given a great deal of
attention in the physics literature. For instance,
the authors of reference [1] used the Clifford
algebra to characterize topological phases of
matter. This work has been followed by several
other research papers considering, for example,
the Classification of stable three-dimensional
Dirac semimetals with nontrivial topology by
means of the Clifford algebraic properties [2].
One interesting point to be remarked is that
prior to these developments, the studies of
Clifford algebras in the physical real had mostly
been focused on the definition of the Dirac
equation and no further properties of the
Clifford algebras were exploited.
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In a previous work, we have argued on the
feasibility of considering modified Clifford
algebras to describe physical phenomena [12].
In this present paper we discuss briefly a
physical example, within the scattering context,
that would allow motivating the use of these
new algebraic structures that might have
applications in the realm of newly discovered
exotic phases of nature such as topological
insulators, anyons and modified algebraic Lie
structures.

1.1 CLIFFORD-TYPE ALGEBRAS

Complex analysis is one of the most influential
areas in mathematics. It has consequences in
many branches of science such as algebra,
geometry, number theory, potential theory,
differential equations, dynamical systems,
integral equations, integral transformations,
harmonic analysis, global analysis, operator
theory, algebraic geometry and many others. It
also has many applications e.g. in physics.
Classical ones are elasticity theory, fluid
dynamics, shell theory, underwater acoustics
and quantum mechanics. Complex analysis is in
fact a simple accessible theory with more
relation to other subjects in mathematics than
other topics. In complex analysis all structural
concepts in mathematics are stressed. Algebraic,
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analytic and topological concepts occur and
even geometry is involved. It also addresses
questions of ordering sets that may be discussed
in connection with complex analysis. Gauss,
Cauchy, WeierstraBand Riemann were the main
initiators of complex analysis and there was
more than a century of rapid development. See
[6, 8, 9].

In order to extend the complex idea to higher
dimensions, one has two possibilities:

I) One considers a real Euclidean space R?*" of
dimension 2n, and one connects the 2n real
variables  X1,Vq, ..., X, Yo t0  n complex
variables Zzj, ..., z,, where we have z; =x; +
iyj, j=1,..,n. See[7, 16].

I) It is also possible to consider the real
Euclidean space R*" of dimension 1+ n. In
this case one can connect the 1+ n real
variables xg, Xy, ...,x, to a hyper-complex
variable x = x, + x,e; + -+ x,e,, where the
basis vectors ey, ey, ..., e, satisfy the relations

eo=1,¢/ =—1, and eje, +epe; =0

forj,k=1,..,nandj # k.

Clifford algebras can be defined as
equivalence classes in the ring #[Xy, ..., X,] of
polynomials in n variables Xj, ..., X,, with real
coefficients, where two polynomials are to be
distinguished in case they differ at least in the
order of the factors X; in one of their terms.
Then two polynomials are said to be equivalent
if their difference is a polynomial for which
each term contains at least one of the factors

X?+1 or X.X;+XX. (LD

Denoting X; by e, j=1,..,n the structure
polynomials (1.1) imply the well-known rules of
the usual Clifford algebra .«7;

ef=-1 j=1,.,n and
eiej = —ejei for i :;t_]

It is well known that ., extends the Euclidean
space  RM™  which has the basis e, =
1,eq,..,e, (see [10, 20]). Similarly, we can
obtain Clifford type algebras if the structure
polynomials (1.1) are replaced by

kj
)(j + aj and XlX] + X]Xl - Zyij'

where i,j=1,..,n, i#j, the kj =2 are
natural numbers and @; and y;; = y;;, for i # j
are real constants (see [20]). We call them
Clifford algebras depending on parameters a;
and vij. If n>2, the Clifford algebra generated by

the structure polynomials (1.2) is denoted by
Mq(kj, (x]-,yij). Forn = 1 we write .« (k, a). If
in ,qu(k]-, a]-,yl-j) all of the k; are equal to 2, we
denote the obtained Clifford algebra by
U%(Z, a]-,yij), Like the usual Clifford algebra
#(2,1,0), this Clifford algebra has the
dimension 2™.

Example. For instance, .#(3,1,0) has
dimension 9 and its basis is

2 2 2 2 2,2
1,eq, ey, ei,ei1e,,e5,e1e,,ee5,ere;5.

Moreover, .;alz(k]-, 1, 0), with k; =2 and k, = 3,
has dimension 6, whereas its basis reads

1, e;,e;,e,6,, €2, e,e2.
The Clifford algebra is .«,(2,1,0).

In summary, a generalization of the Clifford
algebra or simply Clifford-type algebra is
given by fixing a set of real valued functions
a;(p) and y;;(p),i,j = 1,..,n,i # j, possibly
depending on a parameter p, and considering
the more general multiplication rules for the
elements of the basis {e,}. See [20, 21]

1.2 MONOGENIC
(2,5, 74)

FUNCTIONS IN

The monogenic concept extends the ideas of
holomorphic functions for standard complex
algebras. It is important to say that there exist
different ways of defining monogenecity.
However, in these paper we use the usual
definition provided by F.

Brackx, R. Delanghe and F. Sommen [10],
despite that we mention a more general way to
define monogenic as an example. Other books
that you can consult are [13, 19].

1.2.1 CLIFFORD NUMBER

n
X = Xg + Z Xjej
Jj=1

be a point of R™*1 . See [10, 14, 15]. To this

point X by
X =x9 — Z x;je;.

n
Jj=1

Let

x is called a "Clifford number" and x the
"conjugate" Clifford number.

The definition of X implies
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xx = |x|?.
1.2.2 CLIFFORD VALUED FUNCTION

Let Q be an open and connected domain in
R"*! whose points will be denoted by x =
(%o, X1,.--, %,). Let, further, u(x) be a function
with values in ., defined in €. Denoting the
real-valued components of u(x) by u,(x), that
is,

u(@) = Y uses

A

where A is a set of index combination. See [10].
Example. A Clifford valued function in .«% is
given by:

3

Z u;(x)e; = upp(x)eg, +upz(x)eqs
i=0
+ Uy (X)ez3 + Ugp3(X)er2s,

where the basis is
{eo = 1,e4, €, €3, €13, €23, €13, €123}

Note that . is constructed over R*. Thus,
each ud(x) = uA(x0,x1,x2,x3), where A =
{0,1,2,3,12,13,23,123}.

Now, We will consider functions u defined on a
bounded domain Q in R™*? having values in .«
Coapyip), i, u(x) = Xaern Ua (X)e4,
where uy: Q - R, and Ael, =
{0,1,2,...,12,13,...,123...n}. The
generalized Cauchy-Riemann operator and its
conjugate in R™*?1 are defined to be

n

n
D =Zejaj and 5=00—Zej0j

j=0 j=1

Definitionl.2.  An  .%(2, a;,y;;) —valued
function u is called left monogenic if it satisfies
the equation Du = 0 and right monogenic if it
satisfies uD = 0. A left monogenic function will
be called monogenic.

Example. Let u = uy +uje; +uye, +
Ui,64, be a monogenic function with values in
. Then, the real-valued components ug,u,,
u, and u,, satisfy the following system of
differential equations:

doug — 0quy — dyu, = 0,
Oouq + 01Uy + 0y, =
OoUy — 01Uy + Ouy =
OgUqy + 01Uy — Ouy =

coo

Indeed, the basic elements of .« is {e, =
1,e,, €5, e} over R3. Carrying out the
multiplication

D, = (8p +e10; + €;0,)(up + use; +up € +uy; €45)

and taking into account the relations

6161 = 82 82 = _1
eje;p; = e(eje) =—e
€6 = —6€1 6

e e, = e(—eye) = e,

the equation Du = 0 leads to the above
equations because the Dbasic elements
1,e,4, e, e, are linearly independent.

Example. In .« (x|2;a,;a,; a3) the Dirac
system Du = 0, for a Clifford-algebra-valued
function u = uy +uje; +use, +uppeq,,
reads

OoUy — 101Uy + 2Y120,uy — @y0,u, = 0,

douq + 01Uy + ay0,uy, = 0,
Oou — a101Uyp + Oxug + 2Y1205uy, = 0,
oy, + 0quy, — 0yuy = 0,

Finally using D and D, we can define the
Laplace operator as

DD = DD = A, = A

An important consequence of the monogenic
function is the fact that every monogenic
function is solution of the Laplace equation.
Suppose that the function u(x) = Y4 uy (x)ed
is twice continuously differentiable and
monogenic. Using the operator A, we obtain for
u:

Appiut = Bpyq Z uy(x)ey = Z Apiqug(x)ey .

In view of the hnear 1ndependence of the basis
elements e, the equation A, u = 0 implies

A, quy(x) =0 for each wu,. Hence, the
following statement has been proved:

Lemma 1.3. The real-valued components u, of
a monogenic function are solutions of the
Laplace equation A, ;uy(x) = 0.

Since the Clifford algebra .«, has 2" basis
elements, a .«#,-valued function has 2" real
components.

In addition, the equation Du has 2" real
components. Therefore, the equation Du =0
can be decomposed into 2™ real equations.
These equations form a system of 2" linear
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partial differential equations of first order for
the 2" real components of u.

2 SYMMETRIC GREEN
INTEGRAL FORMULA FOR
THE OPERATOR A

Let Q be a bounded domain in R™?! with
sufficiently smooth boundary. Consider an
.%47(2, ai,yij) —valued function u =Y ,ue,
defined in Q and suppose it is monogenic, then
we get the homogeneous second order
differential equation

Au—DDu—60u+Za] ZZ]/Uaau—O

Jj= i<j
2.2)

Since the coefficients a; and y;; = y;; are real,
each real-valued component u, of u satisfies
this differential equation. If the ; are supposed
to be positive and the absolute values of the y;;
are not too large then (2.1) is elliptic.

In order to write a symmetric Green Integral
Formula for the operatorA, we rewrite the
operator A as:

- d ( d
- Z 6xl- aij (x) 6xi)'
LJ

where, ago(x) = 1,a;;(x) = a; > 0; V;=
1,-n, an(x) = aio(x) =0, aij(x) =
_yij:aji(x) = —Yji fori+#j, i,j=1,-
Yij = Vjir Since the coefficients

symmetrical and the adjoint operator of A is
defined by

- d < ( )av)
* P = E —(a:: -
v — axi a” X axi ’
Lj

then A=A =, see [3].

Now, we define the operator Pi in the same way
as in [3]. In order to this article be as self-
contained as possible, we reproduce some
calculations shown in [3].

Let Pi be the first order differential operator
defined by:

,n and
aji arc

Pl v] = (35 a1, (0 25 ) v —u 3 4,00 3%, 22)

where u, v are twice continuously differentiable
functions in Q with values in .:5/41(2, a,vYi j).Then
we have

Zn 0P; |[u v

= (Au)v — ulv. (2.3)

On the other side, using that a;; = a;;, we have

G v - vl

where Ni,i = 0,---n, are the components of the
unit outer normal vector to dQ and N is the co-
normal vector with respect to A, ie., the unit
vector with the direction of the vector

(Z LONL' Z llNl' 'Z amNu>
The Gauss Integral Formula states

N Z%dx—f{mZﬁN du,

Provide the boundary 9Q is sufficiently smooth
and the function f; are continuously
differentiable in Q . Applying this formula to the
functions Pi defined by (2.2) and taking into
account the relations (2.3) and (2.4), one gets
the following Green type Integral Formula for
the operator A:

X1 Pilw, vIN; = 2.4

Ja ((ﬁu)v - uﬁv) dx = |N|[,, (g—;v - ug—;) du
2.5)

3 INTEGRAL FORMULAS

3.1 THE NON-EUCLIDEAN DISTANCE
For the equation (2.1) equation, we define the
quadratic form:

1 0 0o .. o0
(0 ag _ylz —]/1"\
0 =1y @ - ¥yl @G

\0 VYp1 " Vnp o a,

When the aj are positive, one finds that equation
(2.1) is elliptic, provided the absolute values of
the y;; are not too large. In other words, if a; >
0 and |yi jl < const, with a suitable constant,
then (2.1) is elliptic.

As consequence of the ellipticity. Then (3.1) has
an inverse matrix having the form

1 0 .. O
0 All .'--- Al;n , (3.2)
0 An1 . A

where A;; = A;; (because of y;;= y;;). Using

these coefficients, define for two points & =
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(fo, El' ...,gn) and X = (xo, X1, ...,Xn) Of RTL+1
a (non-Eulidean) distance p by

pr= (o= &)+ X1 Ay — &) (% — &), (3.3)
32 THE PARAMETER NEWTON
KERNEL

Now we are in position to consider the function
defined in [3] by

-1 1

(TL - 1)Wn+1 pn—l '

K(x, & =

where w,., the surface measure of the units
phere and p is the distance given by (3.3). In [3]
was proved that the function K(x,&) is a
weakly singular function at ¢ and solution of the
equation Au = 0, for x # &, x,& € Q. See [18]

Applying (2.5) with u = K(x, ) on the domain
Q. =Q\ U (&), where U, (&) is the -
neighborhood of &, we obtain

a
—f K- Avdx—|N|fm( Nv—Ka—;)dy—
oK T
N1 g e Gy v = K 55) s
(3.5)

Taking into account that v is a twice
continuously differentiable function in Q, the
condition that K is weakly singular at £ and the
Schmidt inequality [21], we get

lsif)rgfnsﬁ-ﬁvdx=fnk-5vdx

To calculate

n

llm J.Ix_{ |:£ Z Pi[K, U] Nidﬂ,

&£-0
i=0

we observe from (2.4) that

ZP[Kv]N (%% e - i)
aK(x $)

v() - R(x f)—)
(3.6)

Using (3.6) and the same arguments as in [3]
pages (532 - 533), we obtain

lim Sy . P, ] Nidie = (e i) o(8) -
i=0

&£-0

(3.7)
We recall that as the function K(x,&)is a
weakly singular function at ¢ and solution of the
equation

Au = 0, for x # &,x,§ € Q, the limit (3.7) shows
that K(x,&) is a fundamental solution for the
operator A. We call these function the parameter
Newton kernel in ,,zf/Q(Z, aj, yi}-)

Finally, carrying out the limiting process € = 0
in (3.5), we get the Cauchy-Pompeiu type
Integral Representation Formula.

Theorem 3.1. Suppose v is a twice continuously
differentiable function in Q with values in the
Clifford type algebra ,%(2, aj,yi]-), over
orientable manifold with boundary Q). Then we
have

~ 6R ov
(@ v1y) o = |0 (a—ﬁv R aN) »
+ [ K- Avdx

(3.8)
for points & in Q.

If the function v is a solution of equation (2.1),
then Theorem 3.1 leads also to the following
representation by boundary integrals:

Corollary 3.2. Let v be an M(Z, aj,yij)—valued
solution of equation Av = 0, then
av
K azv) du

- oK
(i) v(© = N[, (ﬁv
(3.9)

for points & in Q).

Remark 3.3. The Cauchy-Pompeiu type
formula (3.8) is different to that obtained in the
paper [3]. Due to the non-commutativity of the
algebra (see (1.3)). Other Cauchy-Pompeiu type
integral formula can be obtained considering
v =K(x,&)in (2.5).

Theorem 3.4. Suppose u is a twice continuously
differentiable function in Q with values in the
Clifford type algebra d?/é(z, a]-,yij). Then we
have
u(f)'C(aj,YU) |N|f(m<
K dx

—K - u%>dy+f Au

(3.10)
for points & in Q

3.3 A DISTRIBUTIONAL SOLUTION

Using the parameter Newton kernel K (x, &) we
will construct a distributional solution for the
inhomogeneous equation Au = —h. We denote
Q, as the domain W with respect to the
x —space and ), as the domain () with respect
to the & —space.

Theorem 3.5. Let h be an integrable function
with values in J@(Z, aj,yij). Then the function u
defined by
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is a distributional  solution of the
inhomogeneous equation Au = —h, where
c(aivij) is a  Clifford  number  in
Udg(z, a;, yl-j) with inverse.

Proof. Suppose j is a test function with values
in t;dg(Z, a]-,yij). Replacing u by ¢ in the
Cauchy-Pompeiu formula (3.8), we obtain

@) =cNapvy) - [K - Dp dx.

Taking into account the Fubini’s theorem for
weakly singular integrands, we have

J u-Apdx =
Qx

L (Lf(—h) &-c? (ai: Vl-j) -K(x, E)d{)ﬁ @dx=
/] @ () < [REBEY dx) g

fﬂ (@ (€ )as.

Using the Cauchy-Pompeiu type formula (3.10)
the following theorem can be proven similarly

Theorem 3.6. Let h be an integrable function
with values in ,x{ég(Z, a]-,yij). Then the function u
defined by

u@ = | K@ () 0@

is a  distributional solution of the
inhomogeneous equation Au = —h, where
c(ai,yi]-) is a Clifford number in
.;a/ég(Z, a;, yl-j). with inverse.

Remark 3.7. Note that the Cauchy-Pompeiu
formula showing in the paper [3] is not useful in
order to obtain distributional solutions of the
differential equations Au = —h.

3.4 THE GENERAL SOLUTION OF THE
INHOMOGENEOUS EQUATION Au = —h.

Theorem 3.8. Let h be a continuous function in
the algebra generated by (1.3) then The general
solution of the inhomogeneous equation Au =
—h. given by

wG) =+ [0 © - (wr,) RO

where w, is an arbitrary solution of the
homogeneous equation Au=0 and c is a

Clifford number.

Proof. 1t is clear that E(uh+fﬂ(—h) -
c‘l(al., yij)l?(x, f)df,). On the other hand, let u

any distributional solution of the equation Au =
—h. Then the difference of both functions

=060 = [0 @+ (wr, ) R

is a distributional solution of the equation Au =
0. 0Then by Weyl’s Lemma [17] for the elliptic
equation Au =0 we get that u, must be a
classical solution of this equation.

4 APPLICATIONS:
COMBINATIONS OF FIRST
AND SECOND ORDER
OPERATORS

In this section we consider the power two of the
operator A and we use the Cauchy-Pompeiu
formula in order to solve A?u = h where h is
continuous. Also we consider the mixed of the
operator, for instance DAu = —h., where h is
also continuous.

In order to show the combinations we need the
integral representation formula of Cauchy-
Pompeiu type for the operator of order one D —
A, where A is constant, the name of this operator
is the metamonogenic operator of order one. [5].

4.1 CAUCHY-POMPEIU TYPE FORMULA
FORD—-4A=D,

Using this distance p define in (3.3), we can

define the kernel for D as

E(x,$) =
11 N
mw((’co —$o) — i,k2=1 e A (xy — fk))
4.1

See [4, 11] for the proof.

If
$,(x,8) = Axo — &) (4.2)

for A € R, we can define
Ey(x,8) = E(x,§)ePA*D. (43)

Theorem 4.1. The function E;(x,&) is a
fundamental solution for the operator D,, for
x # &. For the proof of this theorem, see [4, 11].

Finally, as part of the proof of the previous
theorem, one consequence is that we get the
Cauchy-Pompeiu type integral formula for D,
operator.

Theorem 4.2. Let u be a twice continuously
differentiable function with values in () C
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Vdfllz. Then, at each interior point & of Q we
have

¢ (@ yy) u® =

f E_; (x,&) do-u-— f E_; (x,&) - Djudx.
a0 Q

(4.4)

4.2 INTEGRAL REPRESENTATION FOR
THE EQUATION A?u =h WITH RIGHT
HAND SIDE CONTINUOUS

Let W be a bounded domain in Rn+1 with
sufficiently smooth boundary. Consider the
following homogeneous equation:
R0 = Ao = h, 4.5)
where w is a four times
differentiable function in Q.
Following the ideas given in [6, 4], this
equation is decomposed into the system

continuously

=0 (4.6)
h (4.7)

|>? l>1

Using (3.8) and (4.6), we have the following
integral representation for w:

C((Z]-, yll) ' (J)(f) =

|N|f (ak an)d +fﬁq>d
—_—=w — - " X,
90 \ON oN 0

(4.8)
for points ¢ in Q. On the other hand, using (3.9)
and (4.7) we also get an integral representation
for @, if c(a;, ¥i) admits inverse, then we have:

o© = [ L0 () hOds
* (4.9

Substituting (4.9) in (4.8), we rewrite the
integral representation for Au = h as
C(a}! VU) ' w(f) =

3 oK (x, ) ()
N w(x) —K(x,¢) >
IN| mx( an X, n

of Lm‘ o (R - (a yl.,.) h@®)

dé dx,

(4.10)
for points ¢ in Q.
Here, Q, means the domains () respect to the
variable x and () is the domain () respect to the
variable &; while dQ, denote the boundary of Q,

and dQ; denote the boundary of {;

4.3 INTEGRAL REPRESENTATION FOR
A2(D — DHw =0

In this section, we present an example which
illustrates the use of the formulas set forth in the
preceding sections. Using the Cauchy-Pompeiu
Integral Formula (4.4) and the previous result
(4.10),

we can obtain an integral representation for
A%(D — D)w = 0 as follows:

Consider the system
Nw=d
dD—-A)=h

4.11)
(4.12)

Using the formula (4.10), we have for the

functions w® in (4.17) the following
representation
c(a; vy )'w(€) =
- oK (x,¢) ( )
A ( 2000 - K60 22
f f R (RG6) - ef (ai,yi}.)-fb)
o, /o,
dé dx,
(4.13)

On the other hand for (4.12) we use the Cauchy-
Pompeiu Integral Formula (4.4) assuming that
¢ (a;, yij) has an inverse, we obtain:

00 = ') | B
QO

) [ Bl Dy o) d
(4.14)

2(x,§) - do - ®(x) —

or

‘D(f) =

Dy (B2(§)) ax

(4.15)
Substituting the above expression in (4.10), we
obtain the following integral representation for
the function w:

c(a; v, )'w(f) =
o) - R, 0 22
+
f f R O® (6O -t (ay,)-
Q,Jq;
ez @y fa . E_; (5,5)-da-52(é)) dédx
3

+

3 6K( ,8)
IN|
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f J’ R, (R 8) - et (“i' Vij) '
Qy JQ;

i) | B (68) ba (8(9))) afax
3

44 INTEGRAL REPRESENTATION
FORMULA FOR THE EQUATION
A(D — ) = h WITH RIGHT HAND SIDE
CONTINUOUS

Now we are in position to give an integral
representation for solutions of the following
equation:

AD-MVDw=h (4.16)
for a three times continuously differentiable
function @ in Q. This problem is equivalent to
find an integral representation for the solutions
of the inhomogeneous equation (D — Dw = P,
where the right-hand function F is a solution of
the equation A® = h.

Considering the system

(D - A)w = (4.17)
= h (4.18)
Then we have the following integral

representation for the functions w in (4.17)
C(aj' yij) ! (l)(f) =
[ B do- o
oQ

- [ oeax
Q
(4.19)
On the other hand, for the equations (4.18)

using the distributional solution, we obtain the
following representation

O(©) = o0, K (£:6) i (a

Summarizing,

v,) h(©)ds (4.20)

e y,)  0§) =
f E_j(x,&)-do-w(x)
o0
- L Er () [ERGORSCES

“h®dE-dx.  (4.21)

5 BRIEFLY DISCUSSION ON
THE POSSIBLE PHYSICAL
PROPERTIES

In this section we discuss one interesting
physical example where we can argue on the
implications of our results concerning a
currently hot topic in condensed matter physics.
Within this context, the study of the low energy
physics of new materials, such as graphene,
silicene and topological insulators leads to the
analysis of the transport properties of Dirac
fermions, i.e., particles that satisfy the standard
Dirac equation (For a general discussion on the
physical properties of topological insulators see
reference [22]. Restricting to the two-
dimensional case, the two dimensional Dirac
Hamiltonian reads
H = vp(kyox + kyoy) +mao, (5.1)

where vy = 105m/s is called the Fermi
velocity of the Dirac fermions whereas m is a
(Real) tunable parameter called the effective
mass and might depend on nature of the
physical entities under consideration. In
addition, si 0; = (i = x,y,z) are Pauli matrices
describing spin degrees of freedom, whereas
k= (kx, ky) is the momentum measured from
the Dirac point.

The previously defined Pauli matrices satisfy
the algebra

(5.2)
(5.3)

0,0; — 0;0; = 200y
O'l'O'j + O}'O'l' = 261]

with €;;; The totally anti symmetric Levi Civita
symbol and di j the Kronecker delta.

Now, for a quasi-one dimensional system, we
can focus on the motion along the x axis. Then
we could use our results to describe scattering
processes as described in the figure. In panel
(a), we depict a typical scattering set up where
an incident way (upper arrow) impinges on a
potential barrier (in this case, of with L and
amplitude V;). Then, the quantum mechanical
preservation of probability implies the outcome
to be composed of two counter-propagating
waves with amplitudes r (reflected) and t (for
transmitted), which are in general complex
numbers that must satisfy |r|? + |t|?> = 1. This
is schematically shown in the upper panel (a) of
the figure. We could then used our approach to
propose a scattering setup for modified Dirac
fermions according to the lower panel (b) in the
figure. Here, a left incoming (generally
bicomplex) propagating wave would be also
scattered off a potential barrier. Yet, the
amplitudes now being T and R could but must
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not longer be defined as complex parameters,
since, accordingly to our integral representation
for the modified Laplace A operator, one could
find solutions with a more general structure.

In particular, the expansion coefficients k; that
appear in the solutions depicted in panel (b)
could be interpreted as those extensions of the
standard quantum momentum eigenvalues in the
momentum space representation of the quantum
mechanical wave function. One important point
here is the nature of the boundary conditions
that lead to a well-defined solution.

= 1 e

(b)

Tat

Figure 1: Quasi-one dimensional system

We would expect our results to be relevant for
exotic quasi particles with much more complex
internal physical structure as it happens in the
context of the anyonic particles, i.e. those
quantum particles whose composite Hilbert
space leads to more general statistical properties
as compared to Dirac-Fermi or Bose-Einstein
statistics. It has been already established in the
literature that the anyonic wavefunctions in a
two-dimensional space are just 1-dimensional
representations of the braid group [23, 24, 25,
26]. This is in turn related to the fractional
quantum Hall effect and we expect to provide
new Clifford algebraic representations of such
extensions of the underlying Lie algebra.
Needles to say, one could also resort to
numerical solutions to deal with more complex
situations. Yet, this approach goes beyond the
goals of the present work and could be the
subject of future work.
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