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1 Introduction

Optimization methods have played a central role in the advancement of knowledge
and solving problems in a wide range of scientific disciplines, including population
dynamics [[10] and fluid dynamics [6} [12], to name a few. In population systems,
Fisher’s equation is a classical model in population forecasting [7} 5], which captures
the complex interactions. Despite the challenges posed by this model for being non-
linear, the unconstrained optimization methods [14]] provide effective tools to tackle
it.

Among optimization methods, the steepest descent and quasi-Newton techniques
stand out [[16] and are widely recognized for their effectiveness in unconstrained
optimization. Both rely on gradient information to iteratively refine approximations,
converging toward optimal or near-optimal solutions. To improve their performance,
they are frequently combined with line search strategies [17], which determine
suitable step sizes and enhance the convergence efficiency.

The usefulness of these optimization approaches goes beyond theoretical analysis,
finding applications in practical and socially relevant problems such as disease con-
trol [13]] and resource management [9]. For example, in epidemiology, optimization
techniques have been used to design efficient vaccination strategies or to allocate
limited medical resources [§]]. In environmental management, they have supported
the optimization of harvest quotas or the design of conservation strategies that help
preserve ecological balance [[15].

By integrating optimization methods with ecological modeling, researchers have
enhanced their understanding of complex systems and strengthened decision-making
processes aimed at achieving sustainable outcomes [[11]]. Optimization-based ap-
proaches facilitate informed decision-making by systematically exploring trade-offs
under uncertainty. [[19].

The rest of this paper is organized as follows: Section [2] introduces the state-
ment of the optimal control problem governed by the Fisher equation. Section
establishes the characterization of the optimal control. Section ] describes the op-
timization methods, and Section [3] presents the numerical simulations, including a
sensitivity analysis of algorithmic parameters. Finally, Section [6] summarizes the
main conclusions.

2 Statement of the Problem

We consider the following semi-discretized version of the problem presented in [18]].
The objective is to minimize a quadratic cost functional subject to a semilinear partial
differential equation, formulated as follows
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: | 1 rT
min J(u,y) = 3(0(T) = y) "M(Y(T) = yo) + 5 fy u()" Mu(r) dr,

(P) subject to:

My (1) + Ay(t) + M diag(u(1))y(r) = My(t) - My(1)?,
O0<u(r)<l,

For all ¢+ € (0,T], where M and A denote the mass and stiffness matrices ob-
tained from the discretization of linear finite elements, and diag(u(¢)) represents the
diagonal matrix formed by the components of u(7). Both M and A are assumed to
be symmetric and positive definite. The objective functional J is minimized over the
given set Uyg X R", where

Ugg ={u(t)|0<u(t) <1forallt e [0,T]}.

The semilinear equation associated with this optimal control problem, referred
to as Fisher’s equation, is considered in its semi-discretized form. The resulting
optimization model constitutes a constrained problem, which is generally more
challenging to solve. In the following section, we derive an equivalent unconstrained
formulation of problem (P).

2.1 Penalty method

We use the penalty method to transform the constrained problem into an uncon-
strained one. This approach modifies the original objective functional by adding a
penalty term, known as the penalty function, which imposes a cost for violating the
constraints. Specifically, the penalty term is composed of a penalty parameter mul-
tiplied by a function that quantifies the extent of constraint violation. This measure
is strictly positive when the constraints are violated and reduces to zero when the
constraints are satisfied.
We denote the resulting unconstrained problem associated with (P) as follows:

T
min J(u.3) = 30 =50 MOM =)+ 5 [ Mt &
(P1) +o1(u(1) + @2 (u(1))
subject to:

My, (1) + Ay(t) + M diag(u(1)) y(t) = My(t) - My(1)?,

for all t € [0, T], where the penalty terms ¢; and ¢, are defined as follows:
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T
o1 (u() = Y / max{—u(1), 07 M max{—u(1), 0} dr,
2 Jo

T
02 (u(t)) = Z/ max{u(t) — 1,0}T M max{u(r) — 1,0} dr.
2 Jo

2.2 Fully discrete problem

We fully discretize the problem (P;) using a finite difference scheme to allow com-
putations within finite-dimensional spaces. To this end, the time interval [0, T] is
partitioned into m subintervals such that 0 = #; < #, < --- < t,, = T. For reasons
of numerical stability, we adopt the implicit Euler method for time integration [20]].
Moreover, the time integral is approximated using a Riemann sum. This leads to a
fully discrete reformulation of problem (P;), denoted as follows:

. 1 ot
min J(u, y)i=50r - yo) ' M(yr - ya) + EMTMmu + @1 (u) + @2(u)
(P2) subject to:

By + Ay + My, diag(u) y = My, y — Mmyz’

where the penalty terms ¢ and ¢, are defined as:
ot
p1(u) = 77 max{—u, 0}7 M,, max{-u, 0},
y ot T
w2 (u) = - max{u — 1,0} M,, max{u — 1,0},

where M and A are matrices of order n> X n?, with n denoting the number of spatial
subdivisions per coordinate direction. The control and state variables are denoted as
vectors u = [ug, us, ..., um]? and y = [y1,¥2,...,vm]’, both lying in RN, where
N = n?m, and each Ui, y; € R" represents the snapshot at time stepi = 1,...,m.
The block matrices involved are given by:

MO0 O A0 O M 0 O
Mm: 0 s Am: 0 s Bm:i—M N
ot
0

where M,,,, A,,, and B,,, are matrices of size N X N.

The penalty parameter y is chosen to be sufficiently large to enforce the box
constraints on the control, while avoiding excessive ill-conditioning of the resulting
optimization problem. In all experiments of next section, we set y = 1, which was
found to provide a good compromise between accuracy and numerical stability.
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3 Characterization of the optimal control problem

3.1 Existence of optimal controls.

A central question is the existence of a solution to the optimal control problem. To
address this, we begin by introducing the concept of a local solution to problem (P).

Definition 3.1 A function ii € RY is called a local optimal control for problem (P,)
if
J(@, y(i0)) < J(u, y(u))

for all u in a neighborhood of .

The residual function is defined as follows:
e(u,y) := Bpy + Ay + My, diag(u) y — M,y + Mmyz.

Note that both the cost functional J and the residual function e are continuously
differentiable. Suppose z = (i, y) is a local solution of (P;) and that the partial
derivative e, (i, y) is a bijective linear operator. Then, by the Implicit Function
Theorem (cf. [1]), there exists a neighborhood of i in which there is a unique
mapping y(u) satisfying

e(u,y(u)) =0, ey

and this mapping is continuously differentiable.

If, for every u € RV, equation (T)) admits a unique solution y(u), we can define
control-to-state operator S, which maps a control u to its corresponding state y as a
solution of the semi-discrete Fisher equation:

S:RYN - RV,
ur Su):=y.

The operator S is continuously differentiable, but generally nonlinear due to the
nonlinearity of the state equation. By substituting y = S(u) into the cost functional
of problem (P;), we obtain the corresponding reduced optimization problem:

min () = 3 (S = va) M (S()r = va) + 50l My 1 (0) + 920, 2)

so that f(u) = J(S(u), u).

Theorem 1. There exists an optimal control of the reduced optimization problem (2))
and consequently of problem (P;).

Proof. Since f(u) > 0, the infimum

J = inf f(u) 3)

ueR”
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exists, and there is a sequence {u,}, , C RN such that f(u,) — j as n — oo.
Since S is continuous, f is also continuous, and the sequence {un}:f:l is bounded;
otherwise, we would have f(u,) — co as n — oo. By the Bolzano—Weierstrass
theorem (cf. [4]), some subsequence {unk}zoz | converges to some i € RY, that is,

Up, — U.
The continuity of f ensures that

f (i) :klglgof(unk)zj-

3.2 First order optimality conditions

In this section, we derive the first-order optimality conditions that any solution to
problem (P,) must satisfy. Since the objective functional f is differentiable, any
optimal control & of (P,) must satisfy

V@) h=V,J(S@@),a)[S (@)h] + V,J(S(i),i)h = 0,

for all » € RN. However, computing the derivative S” explicitly may be computa-
tionally expensive. To avoid this, we introduce the following definition.

Definition 3.2 Let it € RN be an optimal control for (Py), and let § = S(ii) denote
the associated state. A function p € RN is called an adjoint state if it satisfies

ey(3,i) p = Vy,J(3, i), 4
eu(3, @) p =V, J (3, ), )

where e(y,u) := B,y + Ay + My, diag(u)y — M,,y + M,,,y*. Here, this residual is
defined by bringing all terms to the left-hand side.

The introduction of the adjoint state simplifies the optimality system, avoiding the
explicit computation of S’. By the Implicit Function Theorem, the control-to-state
operator S is continuously differentiable in a neighborhood of i, which implies that
ey (¥, i) is an invertible linear operator.

We now present the first-order necessary optimality conditions for problem (P»).

Theorem 2. Let it € RN be an optimal control for (P;) and 3 € RN the correspond-
ing state satisfying:

By + Amd + My diag(it)y — M3 + My 3* = 0. (6)

Then, there exists an adjoint state p € RN such that



Optimal Control of the Fisher Equation. A Comparison of Optimization Methods. 7
=Bpmp + Amp + My diag(it) p — My p + 2Mdiag(y)p = 0, @)
M,,diag(p)y — 6t M, it — 6t'yM,,, max{—iu1,0} — 6tyM,,, max{iz — 1,0} =0, 8)

where diag(i1) and diag(p) denote diagonal matrices with entries from i and p,
respectively.

Proof. By the Implicit Function Theorem [21]], the control-to-state operator S is
continuously differentiable near ii. Therefore, there exists an adjoint state p € RV
that satisfies equations (@) and ().
Computing the derivatives explicitly, we obtain:
ey(3.0) 1 = [Bup + Anp + Mydiag(@)p = Myp + 2Mydiag(5)p]" h,
eu(3.0)"h = [Mpdiag(p)3]" h,
VyJ(5.@)"h = [Myr - yal" hr,
VuJ (3,@)" h = [6tMyii — 5ty M,, max{—i, 0} + 6tyM,, max{ii — 1,0}]" h,
for all h € RV,

From equation (5), we immediately obtain (8). Additionally, by equating both
sides of equation (), we get:

[Bup + Amp + Mudiag(@)p = Myp + 2Mydiag(5)p]" h = [Myr = yal" hr.
This yields the terminal condition pr = Myt — yq, and the adjoint equation:

—Bup + Amp + My diag(it)p — M, p + 2M,diag(3)p = 0.

3.3 Numerical solution of state and adjoint equations.

To compute the state and adjoint variables associated with any given control u €
R¥, we propose Algorithms 2 and 3. These procedures discretize the time interval
[0, T using the implicit Euler method and linearize the nonlinear Fisher equation
through Newton’s method. Let 67 denote the time step. The algorithms are detailed
in Algorithm 1 and Algorithm 2 that can be found in the Appendix.

4 Optimization Methods

In this section, we address the problem

min f(u).
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The algorithms designed to solve this problem are iterative and start from an initial
guess ug. At each iteration k, the goal is to find a descent direction dj that satisfies

flur + ardr) < fug),

for some step size ay > 0.
Once a descent direction is determined, it is necessary to select a step size ax > 0
that satisfies the following.

oy = argmin . f(ug + ady).

However, since problem (P;) is nonconvex, computing the exact minimizer is com-
putationally expensive. Therefore, an inexact step size ay is usually chosen using the
Armijo rule, which proceeds as in Algorithm 3. An alternative step size selection
method employs Wolfe conditions, described in the Algorithm 4. Both line-search
algorithms can be found in the Appendix. See [2] for further details.

4.1 The steepest descent method

To compute the descent directions, we consider d = =V f (uy), where
d = My, diag(pr)yx — 6tMyuy + 6tyM,, max{—uy,0} — 6tyM,, max{uy — 1,0}.

By combining this direction with an inexact line search strategy of Armijo type
(either using the Armijo rule or Wolfe conditions), a globally convergent behavior
can be achieved.

The steepest descent algorithm with line search to solve the minimization problem
is outlined in Algorithm 5 of Appendix.

To justify the convergence of the proposed optimization methods, we assume
local Lipschitz continuity of the gradient of the reduced objective function. This is
stated in the following theorem:

Theorem 3. The gradient V f is locally Lipschitz continuous.

Proof. Although V f may not be classically differentiable, it is differentiable in the
Newton sense (cf. [2]). As a consequence, the local Lipschitz continuity of Vf
follows.

4.2 Quasi-Newton Methods

Another strategy for obtaining a descent direction involves using the Hessian matrix
computed by the Newton method (cf. [2]). However, calculating the exact Hessian
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can be computationally expensive. To address this, we adopt quasi-Newton methods,
which use an approximation of the Hessian matrix, denoted by Hy, to improve
numerical efficiency.

In particular, we consider the Symmetric Rank-1 (SR1) and BFGS methods [3]],
where the descent direction is defined as

di = —H 'V f (up),
with sg = ugy1 — ug, gk = Vf(ur+1) — Vf(ug), and Hy updated as follows:
¢ Symmetric Rank-1 (SR1) method:

(8 — Hiesi) (gk — Hisi)™
(gx — Hiesi) T sk

Hyy1 = Hi +

¢ BFGS method:
gkgy  Hisksy Hy
Hiyi =He+ — - —5
81 Sk S Hiesk

It should be noted that the SR1 update does not always guarantee a descent
direction. The SR1 algorithm combined with Wolfe conditions proceeds as in Al-
gorithm 6 of Appendix. While the BFGS algorithm, which guarantees the positive
definiteness of Hy, is presented in Algorithm 7.

5 Numerical tests

We study an optimal control problem in R?, which is solved using the Steepest
Descent, SR1, and BFGS methods (the two last ones are quasi-Newton methods)
combined with line search strategies (Armijo’s rule and Wolfe’s strategy). We analyze
the convergence and performance of the sequences generated by each method. The
computational domain is the unit square mesh [0, 1] x [0, 1] ¢ R?. The problem is
the following

min J(u,y) := 3 (yr = 0.5 M(yr = 0.5) + Su" Myt + 1) + 92 (u)
u,y
(P3) subject to:
By + Ay + M, diag(u)y = M,y — M.y,
with ¢ and ¢, given as follows:
Yot T
o1(u) = > max{—u, 0} M,, max{-u, 0},

w2 (u) = 77& max{u — 1,0} M, max{u — 1,0}.
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The following considerations are made:

e M and A are the mass and stiffness matrices associated with the linear finite
element method.

* The initial value u is taken as a constant vector in which each component equals
0.2.

* For the SR1 and BFGS methods, we set Hy as the identity matrix.

e The final time T = 1 is considered in all experiments. This value is used in the
time discretization step.

 In Algorithm 4 (line search with Wolfe conditions), we take y, = 107 and

B=2x10""

* To penalize the control variable, we set ¥ = 1, which ensures that the control is
not costly.

* The notation for the temporal and spatial discretization parameters is m and n,
respectively.

e All numerical experiments were performed on a workstation equipped with an
Intel Core i7 processor (3.4 GHz), 16 GB of RAM, running Linux Ubuntu 22.04.
The algorithms were implemented in python, without parallelization.

* A minimal and fully reproducible implementation of the numerical experiments
presented in this section is publicly available at https://github.com/
CrisitoNunezl2/fisher—-optimal-control—-quasi—-newton.

The spatial discretization parameter n is selected as the smallest value that ac-
curately captures the spatial structure of the solution while keeping the compu-
tational cost moderate. To verify that the observed convergence behavior is not
mesh-dependent, additional experiments with larger values of n are reported in the
sensitivity study. The stopping tolerance tol = 107 is used throughout, which
is sufficient to ensure stabilization of both the objective function and the control
variable.

Problem (P3) is solved using Algorithm 5. The approximated solution obtained
with the steepest descent method and Armijo’s rule is shown in Figure [T The
approximations of the optimal state and adjoint state are displayed in Figures |2 and

respectively.


https://github.com/CrisitoNunez12/fisher-optimal-control-quasi-newton
https://github.com/CrisitoNunez12/fisher-optimal-control-quasi-newton
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Optimal Control

x-axis

Fig. 1: Approximated optimal control at final time T = 1 with y = 1, tol = 1074,
n =10 and m = 10 calculated by Steepest Descent method and Armijo rule.

Optimal State x 107
1.4

z-axis

y-axis 0 o0

x-axis

Fig. 2: Approximated optimal state at time = 1 withy = 1, tol = 107*, n = 10
and m = 10 calculated by Steepest Descent method and Armijo rule.
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Adjoint State x 10~

-4.9983

) -9.9965
y-axis 0 0 x-axis

Fig. 3: Approximated adjoint state at initial time = 0 with y = 1, tol = 1074,
n =10 and m = 10 calculated by Steepest Descent method and Armijo rule.

Problem (P3) is then solved using Algorithm 6. The approximated control ob-
tained with the SR1 method and Armijo’s rule is shown in Figure[d The correspond-
ing optimal and adjoint states are presented in Figures[5]and [} respectively.

Optimal Control

0.06

0.04

u(x.y)

-0.02
1

=)

-0.01

y-axis 0 o0 x—axis

Fig. 4: Approximated optimal control at time # = 1 withy = 1, tol = 107, n = 10
and m = 10 calculated by SR1 method and Armijo rule.
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Optimal State x107

z-axis

y-axis 0 o x—axis

Fig. 5: Approximated optimal state at time = 1 withy = 1, tol = 107*, n = 10
and m = 10 calculated by SR1 method and Armijo rule.

Adjoint State x10
0

y-axis ]

x-axis

Fig. 6: Approximated adjoint state at initial time = 0 with y = 1, tol = 1074,
n = 10 and m = 10 calculated by SR1 method and Armijo rule.

The approximated control obtained with the BFGS method and Armijo’s rule is
similar to that obtained with the steepest descent and SR1 methods.
Stopping criteria and numerical parameters.

All optimization algorithms are terminated according to the same stopping criterion.
We define the error in the algorithms as
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er = [IVf(ui)ll2, 9

and stop the iteration when e; < tol. Unless otherwise stated, the tolerance is set
to tol = 10~*. For the solution of the state equation, an implicit Euler scheme is
employed in time, and the nonlinear system at each time step is solved by Newton’s
method with tolerance 10~ in all experiments. For the line-search procedures, the
Armijo parameter is fixed to y, = 10~%, while the Wolfe curvature parameter is set
to 8 = 0.2. The penalty parameter enforcing the box constraints is chosen as y = 1.
This value provides a good balance between constraint enforcement and numerical
stability; its influence is further investigated in the sensitivity study presented at the
end of the section.

The number of iterations and the execution time for the three methods using
Armijo’s rule are reported in Table[T]

|Meth0d |Iterati0ns| Execution tirne|
Steepest Descent with Armijo’s rule|2048 100.330 seconds
SR1 with Armijo’s rule 3 0.246 seconds
BFGS with Armijo’s rule 3 0.557 seconds

Table 1: Number of iterations and execution time. Parameters: n = 10 and m = 10,
y=1,tol =107%

The number of iterations and execution time for the three methods using Wolfe’s
conditions are listed in the forthcoming Table 2]

|Meth0d |Iterati0ns | Execution time|

Steepest descent with Wolfe conditions -
SR1 with Wolfe conditions 3 1.396 seconds
BFGS with Wolfe conditions 3 1.652 seconds

Table 2: Number of iterations and execution time. Parameters: n = 10 and m = 10,
y=1,tol =10"%

The solution space for the optimization problem with the specified parameters
is RN, where N = n*>(m) = 1000 (n = 10 and m = 10). Armijo’s rule and
Wolfe’s conditions require iterative solutions of the state and adjoint equations.
In addition, Newton’s method is used to solve the Fisher equation. Notably, while the
Steepest Descent method needs approximately 2000 iterations (Figure[7) to satisfy
the stopping criterion, the SR1 and BFGS algorithms achieve convergence in only
three iterations, see Figures [8] and [J] respectively. Moreover, the execution times
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of the SR1 and BFGS algorithms are significantly lower than that of the Steepest
Descent method, as is shown in Tables[T]and 2]

Convergence

0.0050 1
0.0045 -
0.0040
0.0035

& 0.0030
0.0025
0.0020

0.0015 -

0.0010 -

T T T T T u U T T
0 250 500 750 1000 1250 1500 1750 2000
Iterations

Fig. 7: Convergence of the Steepest Descent model with tol = 10™*, n = 10 and
m = 10. The error is e; = |V f(ux)||2, and the stopping criterion is ex < tol.

Convergence

0.005

0.004

0.003 +
~
L

0.002 +

0.001

1 2 3

Iterations

Fig. 8: Convergence of the SR1 model with tol = 107™%, n = 10 and m = 10. The
error is ex = ||V f (ux)||2, and the stopping criterion is e < tol.
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Convergence

0.005 4

0.004 +

0.003
X

e

0.002 +

0.001 +

T T T
1 2 3
Iterations

Fig. 9: Convergence of the BFGS model with tol = 107, n = 10 and m = 10. The
error is ex = ||V f (ux)||2, and the stopping criterion is e < tol.

Numerical results obtained with SR1 and BFGS differ only in the state and adjoint
equation solves. Here, the solution space for the optimization problem is RY with
N = m(n*) = 6000 (n = 20 and m = 15). To examine the convergence behavior of
the BFGS method, the tolerance in the stopping criterion is set tol = 107, The
convergence results are shown in Figure [10]

Convergence

0.0020 +

0.0015 4

ex

0.0010 -

0.0005 -

0.0000

Iterations

Fig. 10: Convergence of the BFGS model with n = 20 and m = 15. The error is
ex = ||Vf (ur)|l2, and the stopping criterion is e; < tol.

The total runtime to solve problem (P3) with these parameters is comparable to
the previous case and requires 9 iterations.
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[Method | y[lterations|time(seconds)|  efina| viol |
BFGS with Armijo’s rule 1073 3 0.617{3.30e-04 | 7.39e-04
Steepest Descent with Armijo’s rule|1073 2048 184.529{1.00e-03 [0.00e+00
SR1 with Armijo’s rule 1073 3 0.227|3.30e-04| 7.39e-04
BFGS with Armijo’s rule 1072 3 0.466(3.38e-04 | 7.39¢-04
Steepest Descent with Armijo’s rule|1072 2048 168.202{1.00e-03 [0.00e+00
SR1 with Armijo’s rule 1072 3 0.230(3.38e-04 | 7.39e-04
BFGS with Armijo’s rule 1 3 0.483(4.56e-04|7.39e-04
Steepest Descent with Armijo’s rule 1 2048 183.378{1.00e-03 [0.00e+00
SR1 with Armijo’s rule 1 3 0.230(4.56e-04 | 7.39e-04
BFGS with Armijo’s rule 10 4 1.117{4.55e-04|0.00e+00
Steepest Descent with Armijo’s rule| 10 2048 200.044{1.00e-03[0.00e+00
SR1 with Armijo’s rule 10 4 0.478|4.55e-04|0.00e+00
BFGS with Armijo’s rule 100 6 1.820(9.17e-04|0.00e+00
Steepest Descent with Armijo’s rule| 100 2048 197.207{1.00e-03 [0.00e+00
SR1 with Armijo’s rule 100 6 0.682(9.17e-04|0.00e+00

Table 3: Sensitivity with respect to the penalty parameter y (fixed n = 10, m = 10
and tol = 1073).

5.1 Sensitivity with respect to algorithmic parameters

In order to assess the robustness of the methods, we conduct a sensitivity analysis with
respect to key problem parameters that may influence both convergence behavior and
computational cost. Specifically, we examine the impact of the penalty parameter v,
the stopping tolerance t o1, and the spatial discretization on the performance of the
considered optimization methods in Tables BH3] This analysis allows us to evaluate
the stability of the algorithms under parameter variations and to quantify how changes
in problem settings affect convergence, runtime, and constraint enforcement.

Table 3] shows that the quasi-Newton methods (BFGS and SR1) are only slightly
affected by variations in the penalty parameter . For y ranging from 1073 to 102,
both methods converge in a small number of iterations, with a modest increase in
runtime and final error for larger values of y. In contrast, the steepest descent method
consistently requires the maximum number of iterations and exhibits significantly
larger computational times, independently of the chosen penalty parameter. Con-
straint violations (described by column viol) decrease as y increases, confirming the
expected strengthening of the penalty effect. The quantity egnax denotes the value
of the stopping criterion at the final iteration.

The influence of the stopping tolerance is reported in Table ] As expected,
tightening the tolerance leads to an increase in the number of iterations and runtime
for all methods. However, BFGS and SR1 remain highly efficient, requiring only a
few additional iterations to reach stricter tolerances, while steepest descent becomes
prohibitively expensive. This highlights the robustness of quasi-Newton methods
with respect to the stopping criterion.

Finally, Table [5] examines the effect of spatial mesh refinement. Increasing the
discretization level leads to higher computational times for all methods due to the
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[Method | tol[lterations|time (seconds)]  egnac| viol |
BFGS with Armijo’s rule 1073 17 4.277(9.78e-05| 1.63e-04
Steepest Descent with Armijo’s rule| 107> 5181 500.930{1.00e-04| 1.58e-05
SR1 with Armijo’s rule 1073 9 0.9111.05e-04|2.12e-04
BFGS with Armijo’s rule 1074 3 0.617|4.56e-04| 7.39e-04
Steepest Descent with Armijo’s rule[107* 2048 188.791{1.00e-03|0.00e+00
SR1 with Armijo’s rule 1074 3 0.264|4.56e-04| 7.39e-04

Table 4: Sensitivity with respect to the stopping tolerance t o1 (fixedn = 10,m = 10,
y =1).

|Method |Discretization|Iterati0ns |time(seconds)| efinalk | viol |
BFGS with Armijo’s rule 8 3 0.366(6.11e-04| 8.56e-04
Steepest Descent with Armijo’s rule 8 1538 129.438(9.99¢-04|0.00e+00
SR1 with Armijo’s rule 8 3 0.211(6.11e-04| 8.56e-04
BFGS with Armijo’s rule 10 3 0.727|4.56e-04| 7.39¢-04
Steepest Descent with Armijo’s rule 10 2048 178.405{1.00e-03(0.00e+00
SR1 with Armijo’s rule 10 3 0.263(4.56e-04| 7.39¢-04
BFGS with Armijo’s rule 12 3 1.262(3.54e-04| 6.46e-04
Steepest Descent with Armijo’s rule 12 2577 269.761(1.00e-030.00e+00
SR1 with Armijo’s rule 12 3 0.242|3.54e-04| 6.46e-04

Table 5: Sensitivity with respect to the spatial mesh resolution (fixed m = 10,y = 1,
tol=1073).

growth in problem size, while the number of iterations for BFGS and SR1 remains
essentially unchanged. Steepest descent, on the other hand, exhibits a substantial
increase in runtime as the mesh is refined. Overall, these results indicate that the
quasi-Newton methods are largely insensitive to discretization changes and scale
favorably with problem resolution.

6 Conclusions

In this paper, we studied an optimal control problem governed by the Fisher equation.
We established the existence of solutions and derived the first-order optimality
conditions that characterize the problem. To address the numerical solution, we
formulated the problem using a penalty method, fully discretized it, and proposed
algorithms for solving both the state and adjoint equations.

We implemented and tested three optimization methods: Steepest Descent, Sym-
metric Rank-1 (SR1), and BFGS. The Steepest Descent method required repeated
evaluations of the cost functional during the Armijo line search, which was compu-
tationally expensive because both the state and adjoint equations had to be solved
at each iteration. Although Steepest Descent converged slowly, it ensured that each
search direction was a descent direction, thus guaranteeing convergence.
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In contrast, the SR1 and BFGS methods, belonging to the class of quasi-Newton
schemes, exhibited significantly faster convergence. The SR1 method was efficient
in the numerical experiments but did not always guarantee a descent direction.
The BFGS method, combined with Wolfe conditions, achieved convergence rates
comparable to SR1 while guaranteeing descent directions. The numerical tests con-
firmed that SR1 and BFGS drastically reduced both the number of iterations and the
execution time compared to the Steepest Descent method.

Regarding the sensitivity analysis, this confirms that BFGS and SR1 provide
robust and efficient performance across a wide range of parameter values, whereas
steepest descent is strongly affected by parameters of the problem and computational
resolution.

Finally, we observed that linearizing the Fisher equation through Newton’s method
at each time step introduces substantial computational costs (for the state and adjoint
equations). For this reason, future research should explore alternative approaches,
such as primal—dual strategies, to reduce these computational demands and to extend
the applicability of the proposed framework to more complex problems, including
higher-dimensional domains or strongly nonlinear reaction terms, to name a few. In
addition, a systematic sensitivity analysis with respect to the physical parameters of
the model, such as diffusion and reaction coefficients, could be carried out to further
assess the robustness of the approach.
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Appendix

State and adjoint equations

Algorithm 1 State Equation

Input: Number of time steps m, initial condition yp, control # € R", and Newton tolerance
tol > 0.

Output:  Approximated solution to the state equation, denoted by w.

1. Fork=1,2,...,m— 1, perform the following:

2. Initialize w = yg41, Vv = Yk

3. Compute the residual:

F(w) = (M + 6t A+ &t M diag(u) — 6t M)w + 6t Mw? — Mv,
4. Compute the Jacobian:
F'(w) =M + 6t A+ 6t M diag(u) — 5t M + 26t M diag(w),

5. Set an initial guess for w.

6.  While ||w — v|| > tol, do:

7. Solve the linear system: F’ (w) dw = —F (w).
8.  Update: w «— w + dw.

9. Setv=w.

10.  End While.

Algorithm 2 Adjoint Equation

Input:  Number of time steps m, final condition pr, control u# € R, and state y € R".
Output:  Approximated solution to the adjoint equation, denoted by p.

1. Fork=m-1,m-2,...,1,perform the following:

2. Define the system matrix:

G=M+o6tA+ 5thiag(uk+1) - O0tM + 25thiag(yk+|),

3. Define the right-hand side: b = M py.
4. Solve the linear system: G pg+1 = b.
5. End For.
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Algorithm 3 Armijo Rule

Input: A descent direction dj.
Output:  An approximate step size a.
1. Initialize @ = 1 and k = 0.

2.  repeat
3. Set a = zlk then increment k «— k + 1.
4.  until

flug + adi) = fug) < yaaV f(ux) dx,
where 0 < y, < 1.

Algorithm 4 Line Search with Wolfe Conditions

Input: A descent direction d.
Output:  An approximate step size .
1. Initialize @ = 1 and k = 0.

2 repeat
3. Set a = 2%, then increment k «— k + 1.
4.  until the conditions

flug + adi) = f(ur) < yaaV f(ux) dx,

and
Vf(uk + adi)"di > BV f (ux) " dx,

are both satisfied, where 0 < y, < 8 < 1.

Optimization Algorithms

Detailed pseudo-code for the steepest descent, SR1, and BFGS algorithms is reported

here for completeness.
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Algorithm 5 Steepest Descent Method with Line Search

Choose an initial guess u, tolerance tol > 0, and set k = 0.

Repeat:

Compute the state y and adjoint state pj using Algorithm 1 and Algorithm 2, respectively.
Set the descent direction

Ealbadi e

di = My, diag(pr) yrx — 6t Mpux + 6tyM,, max{—ux,0} — St yM,,, max{uy — 1,0}.

5. Determine the step size @y using either Algorithm 3 (Armijo rule) or Algorithm 4 (Wolfe
conditions).
6.  Update the control:
Uk+1 = Ui + (lkdk.
Recompute yi4+; and pg4 using Algorithm 1 and Algorithm 2, and increment k «— k + 1.
7. Until

IV.f (ui) || < tol.

Algorithm 6 Symmetric Rank-1 Algorithm with Wolfe Conditions

Choose an initial guess 1, tolerance tol > 0, and an initial matrix Hy. Set k = 0.
Repeat:

Compute yi and py using Algorithm 1 and Algorithm 2.

Compute the gradient:

Ealbadi S M

Vf(ux) = —M,, diag(pr) yr+ 6t My uy — 6t y My, max{—uz, 0} + 6t yM,,, max{ur—1,0}.
5. Compute the descent direction:
di = —H 'V f (ug).

6. Determine the step size ay using Algorithm 4 (Wolfe conditions).
7. Update the control:
Uk+] = Uk + a/kdk.

8.  Set sk = ugs1 — Uk, 8k = Vf(ur+1) — Vf(ur), and update the Hessian approximation:

(g — Hisi) (g — Hiesi)T
(8k — Hrsi) s

Hpy1 = Hi +

9. Increment k «— k + 1.
10.  Until
IV f (uxe) || < tol.
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Algorithm 7 BFGS Algorithm with Wolfe Conditions

Choose an initial guess u, tolerance tol > 0, and an initial matrix Hy. Set k = 0.
Repeat:

Compute yi and py using Algorithm 1 and Algorithm 2.

Compute the gradient:

Ealbadi S M

Vf(ux) = —M,, diag(pr) yr+ 6t Mpuy — 6t y M, max{—uz, 0} + 6t yM,,, max{ur—1,0}.
5. Compute the descent direction:

di = —H'V f (u).

o

Determine the step size @y using Algorithm 4 (Wolfe conditions).
7. Update the control:
Uk+] = Uk + akdk.

8.  Set sk = ups1 — Uk, 8k = Vf(ur+1) — Vf(ur), and update the Hessian approximation:

gxg;  Hisks) Hy

Hiy = Hi + -
* g,{sk s,{Hksk
9. Increment k « k + 1.
10.  Until
IV f (ui) |l < tol.
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