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1 Introduction

The upper half plane IH ⊂ IC modulo the action of SL(2,ZZ) is well known to
parametrize the conformal equivalence classes of tori. In this article, we focus on
two important families of tori: product tori and flat tori. Our primary goal is to cal-
culate their specific conformal classes within the moduli space M := IH/SL(2,ZZ)
as presented in Theorem 1 and Theorem 2. As a significant byproduct of our inves-
tigation, we show how these tori can be realized as Hopf tori (see Section 4) whose
defining curve is a circle in the two dimensional sphere S2, and we establish the
crucial result that standard tori and product tori are always conformally equivalent
to each other.

We denote by S1 the unit circle centered at 0 of the complex plane IC. Through-
out this article, we define a torus as any manifold diffeomorphic to S1 × S1, and a
complex torus as a torus equipped with a complex structure. Now let R,r ∈ IR be
such that R > r. We denote by TR,r the torus generated by rotating a circle of radius
r, centered at (R,0,0) in the xz–plane, around the z–axis. The standard Riemannian
metric of IR3 induces a Riemannian metric on TR,r, whose conformal class naturally
defines a complex structure. We will also use TR,r to refer to this complex torus and
we term these complex tori, standard tori. Finally, we define product tori as the
complex tori associated to the complex structures of S1×S1 induced by Riemannian
metrics that, in the coordinates (θ ,ϕ) 7→ (eiθ ,eiϕ), take the form g = adθ 2 + bdϕ

for a,b real positive numbers.

Our primary motivation for the calculations presented in this article was to explic-
itly visualize the conformal classes of metrics on S1 ×S1 by finding embeddings in
IR3 whose induced metric is conformal to a given elliptic curve (equivalently, to a
complex structure). This is directly related to a conjecture, now a theorem proven by
Garsia in [3] and reproved by Pinkall in [4], which asserts that every elliptic curve
can be realized via an embedding of S1 ×S1 (see [4, Corollary in page 1]). Product
tori and standard tori represent natural and important families of tori whose confor-
mal classes, as subsets of the moduli space M , warrant a clear understanding. This
article summarizes the author’s journey in solving this problem. Our calculations
highlight essential features of the theory of moduli spaces of conformal classes of
metrics, which we believe motivates and justifies this work.

In this article, we demonstrate that the conformal classes of standard tori within the
moduli space M correspond to the image of {0}× (0,∞) ⊂ IH under the quotient
map q : IH→M (see Theorem 1). As anticipated, standard tori TR,r sharing the same
ratio R/r are conformally equivalent. Specifically, we show that for every ω > 0
there exists a standard torus TR,r biholomorphic to the elliptic curve IC/(ZZ+ iωZZ);
in fact, the standard torus TR,r corresponds to the real number
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ω :=
2π√
R2

r2 −1
.

Furthermore, we establish that the conformal classes of product tori coincide with
those of standard tori, thus occupying the same ray within the moduli space M .
Moreover, we prove that these conformal classes of standard and product tori are
precisely those of Hopf tori associated with circles in S2 (see Proposition 3).

In Dall’Acqua et al. [1], the authors calculate the conformal classes of what they
term ”tori of revolution.” Although closely related, these tori of revolution are dis-
tinct from our standard tori. However, Dall’acqua et al.’s [1, Proposition 4.2] and [1,
Theorem 4.5] exhibit a similar spirit to our Theorems 1 and 2. Indeed, as a conse-
quence of Dall’acqua et al.’s [1, Theorem 4.5] and our results, the conformal classes
of tori of revolution and standard (or product) tori are the same. In Pinkall [4], the
author employed Hopf tori to construct examples of Willmore surfaces, which are
extremal surfaces of the Willmore functional

∫ ∫
H2dA (where H denotes the mean

curvature). Also around the Willmore functional, Dallaqua et al. [1] investigate the
Willmore flow with initial data given by a torus of revolution.

Here we briefly recall the basic facts from the theory of elliptic curves that will be
used throughout this article. A complex torus (also known as an elliptic curve) can
be represented as the quotient of the complex plane IC by a lattice Λ = ω1ZZ+ω2ZZ,
where ω1 and ω2 are two complex numbers that are linearly independent over the
reals. By scaling and rotating the lattice, we can always choose a basis {ω1,ω2}
such that ω1 = 1 and ω2 = τ lies in the upper half plane IH = {z ∈ IC : Im(z)> 0}.
The complex number τ is called the period ratio of the complex torus (with respect
to the chosen basis).

The moduli space of elliptic curves M is a central object of study in numerous
areas of mathematics, spanning Riemannian geometry, complex geometry, number
theory, and theoretical physics. Its significance lies, in part, in providing a unique
lens through which the intricate relationships between these different fields can be
observed. It is our hope that the calculations and the manner of presentation in this
article will ultimately motivate or reinforce future explorations of these profound
interactions.

We believe that the specific calculations detailing the relationships between the con-
formal classes of standard tori, product tori, and Hopf tori presented in this work
have not appeared in the published literature before in such a synthetic manner.
Moreover, we contend that this article presents known results in a fresh and insight-
ful way.

In Section 2, we explicitly calculate the points in the moduli space M corresponding
to the complex tori TR,r. Specifically, we determine a parameter τ ∈ IH, expressed
in terms of R and r, such that the complex torus IC/(ZZ+ τZZ) is biholomorphic to
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TR,r. As previously mentioned, these τ values lie along the positive imaginary axis
{iy : y ∈ (0,∞)} within the upper half plane IH. In Section 4, we summarize the
necessary results from [4], and we identify which Hopf tori are biholomorphic to
standard tori (see Corollary 3). Finally, Section 5 outlines perspectives for future
work stemming from this study.

2 The conformal class of a standard torus

A universal covering map of the standard torus TR,r is given by

Φ(θ ,ϕ) := ((R+ r cos(ϕ))cos(θ),(R+ r cos(ϕ))sin(θ),r sinϕ), (1)

where (θ ,ϕ) ∈ IR2. The induced Riemannian metric g on TR,r from the standard
metric of IR3, when pulled back via Φ to the (θ ,ϕ) coordinates induced by the
covering map (1), is given by

g = Φ
∗(dx2 +dy2 +dz2) = (R+ r cos(ϕ))2dθ

2 + r2dϕ
2.

In these (θ ,ϕ) coordinates, the metric g is diagonal, indicating that ∂

∂θ
and ∂

∂ϕ
are g–

orthogonal. The almost complex structure Jg compatible with g and the orientation
acts as:

Jg(
∂

∂θ
) =

R+ r cos(ϕ)
r

∂

∂ϕ
and Jg(

∂

∂ϕ
) =− r

R+ r cos(ϕ)
∂

∂θ
. (2)

In the context of the complex structure induced by the almost complex structure
Jg (via the Newlander-Nirenberg Theorem, noting that the torsion vanishes in real
dimension 2), the coordinate chart (θ ,ϕ) does not define a holomorphic coordinate
system for which θ + iϕ is a holomorphic function. This is evident from the non-
constant coefficients of ∂

∂ϕ
in the expression for Jg(

∂

∂θ
), and similarly for Jg(

∂

∂ϕ
),

which means that they do not satisfy the Cauchy-Riemann equations with respect
to Jg. In other words, if θ and ϕ were to define a holomorphic coordinate system
z = θ + iϕ , we would require

Jg
∂

∂ϕ
=

∂

∂θ
and Jg

∂

∂θ
=− ∂

∂ϕ
,

which is demonstrably not the case. However, consider the vector fields

X :=
∂

∂θ
and Y :=

R+ r cos(ϕ)
r

∂

∂ϕ
.

These vector fields satisfy the crucial properties

[X ,Y ] = 0, JX = Y and JY =−X , (3)
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The vanishing Lie bracket [X ,Y ] = 0 ensures, by Frobenius’ theorem, the existence
of local coordinates u,v such that ∂

∂u = X and ∂

∂v = Y . In this (u,v) coordinate
system, the action of the almost complex structure Jg becomes

Jg
∂

∂u
=

∂

∂v
and Jg

∂

∂v
=− ∂

∂u
,

which corresponds to multiplication by i on the complex coordinate z = u + iv.
Therefore, the flows of the commuting vector fields X and Y define a system of
analytic (holomorphic) coordinates for the complex structure induced by g on the
standard torus. Next we construct explicitly these coordinates.

Consider the function
F(ϕ) :=

∫
ϕ

0

r
R+ r cos(x)

dx. (4)

Note that the integrand is the inverse of the coefficient of ∂

∂ϕ
from the defini-

tion of the vector field Y . The derivative of the function F with respect to ϕ is
F ′(ϕ) = r

R+r cos(ϕ) . Since R > r > 0, we have F ′(ϕ) > 0. This implies that F is a

strictly increasing function and thus has a well-defined inverse F−1.

The flow of the vector field Y = R+r cos(ϕ)
r

∂

∂ϕ
starting at (θ0,ϕ0) is given by

γ(θ0,ϕ0)(t) = (θ0,ψ(t)),

where ψ(t) satisfies ψ ′(t) = R+r cos(ψ(t))
r and ψ(0) = ϕ0. The solution of this initial

value problem is ψ(t) = F−1(t +ϕ0).

To construct explicit analytic coordinates, let us consider the map Ψ : IR2 → IR2

defined by taking the flows with initial point (0,0). Let

Ψ(θ ,s) := (θ ,F−1(s)).

This map is a global chart of the plane (θ ,ϕ). We claim that z = θ + it are analytic
coordinates for the complex structure induced by the almost complex structure Jg.
Indeed, we have

∂

∂θ
Ψ =

∂

∂θ
= X and

∂

∂ t
Ψ =

∂

∂ t
(ψ)

∂

∂ϕ
= Y.

Thus, in the θ , t coordinates, the vector fields ∂

∂θ
and ∂

∂ t correspond to X and Y
respectively, and we know that JgX = Y = ∂

∂ t and JgY = −X = − ∂

∂θ
. This con-

firms that Jg
∂

∂θ
= ∂

∂ t and Jg
∂

∂ t =− ∂

∂θ
, which is the standard action of the complex

structure on the real and imaginary parts of the analytic coordinate z = θ + it.
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Proposition 1 The map Π : (θ ,s) 7→ Φ(Ψ(θ ,s)) is a holomorphic universal cov-
ering map from the complex plane IC ∼= IR2 with the complex structure z = θ + is to
the complex torus TR,r with the complex structure induced by its Riemannian metric.

Proof:
The map Φ : IR2 → TR,r is smooth and surjective, locally a diffeomorphism, and its
fibers are discrete, so it is easy to check that it is a universal covering map. The func-
tion Ψ is a diffeomorphism from IR2 to IR2, thus, their composition Π := Φ ◦Ψ

is also a smooth surjective map, locally a diffeomorphism, and a universal covering
map.

Let J IC be the standard complex structure on IC such that J IC(
∂

∂θ
) = ∂

∂ s and J IC(
∂

∂ s ) =

− ∂

∂θ
. Let JT be the complex structure on TR,r induced by its Riemannian metric g.

The map Π is holomorphic if and only if dΠ ◦ J IC = JT ◦dΠ , which we will check
next.

We know that Ψ(θ ,s) = (θ ,F−1(s)), so the differential of Ψ maps ∂

∂θ
to ∂

∂θ
and ∂

∂ s
to the vector field Y defined above. The differential of Φ maps ∂

∂θ
and ∂

∂ s to vector
fields of TR,r. Let Z1 := Φ∗(

∂

∂θ
) and Z2 := Φ∗(

∂

∂ϕ
) be a local frame on TR,r. One can

check from (2) that

JT (Z1) =
R+ r cos(ϕ)

r
Z2 and JT (Z2) =− r

R+ r cos(ϕ)
Z1, (5)

Now let us examine

dΠ(
∂

∂θ
) = dΦ(dΨ(

∂

∂θ
)) = Z1 and dΠ(

∂

∂ s
) = dΦ(dΨ(

∂

∂ s
)) =

R+ r cos(ϕ)
r

Z2.

(6)
One can apply equations (5) and (6) to prove dΠ ◦ J IC = JT ◦dΠ . ⊔⊓

Let a := R/r, and define

ω := ω(a) :=
∫ 2π

0

r
R+ r cos(x)

dx =
2π√

a2 −1
.

By the definition of the function F (see (4)), we have the property that

F(ϕ +2mπ) = F(ϕ)+mω,

for every m ∈ZZ. This periodicity of F leads to a corresponding periodicity of the
map Π := Φ ◦ϕ . For all m,n ∈ZZ, we have

Π(θ +2πm,s+nω) = Φ(Ψ(θ +2πm,s+nω)) = Φ(θ +2πm,F−1(s+nω)). (7)

Since Φ has period 2π in θ variable, and F−1(s+ nω) = F−1(F(ϕ)+ nω) = ϕ +
2nπ where s = F(ϕ)−F(0) = F(ϕ), we have
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Π(θ +2πm,ϕ +2nπ) = Π(θ ,ϕ).

Therefore,
Π(θ +2πm,s+nω) = Π(θ ,s). (8)

Then, (8) implies that we can define a map H : IC/(2πZZ+ iωZZ)→ TR,r by

H([θ + is]) := Π(θ ,s),

where [θ + is] denotes the equivalence class of the complex number θ + is in the
quotient IC/Λ with lattice Λ := 2πZZ+ iωZZ. From (8) and the fact that Π is a
holomorphic universal covering map (see Proposition 1), it follows that H is a well-
defined biholomorphic map between the complex torus IC/(2πZZ+ iωZZ) and the
standard torus TR,r.

The following theorem summarizes the results proved with the previous calcula-
tions.

Theorem 1 The standard torus TR,r is biholomorphic to the complex torus IC/(2πZZ+
iω(R/r)ZZ), where ω(R/r) = 2π√

( R
r )

2−1
.

An easy and expected corollary of the previous theorem is the following.

Corollary 1 if R/r = R′/r′ then the two standard tori TR,r and TR′,r are conformally
equivalent.

The range of the function ω(a) := 2π√
R2
r2 −1

for a=R/r > 0 is the open interval (0,∞).

This implies that standard tori are biholomorphic to elliptic curves associated with
period ratios τ = iy where y > 0, which corresponds to the positive imaginary axis
R := {iy : y > 0} in the upper half plane IH. However, the moduli space of elliptic
curves is given by the quotient M := IH/SL(2,ZZ) and a fundamental domain for
this action (see [2, Lemma 2.3.1]) is the set

D := {x+ iy ∈ IH : −1/2 ≤ x ≤ 1/2 and |x+ iy| ≥ 1}.

The existence of this fundamental domain implies that different points in IH, and
therefore potentially different values of ω , can represent the same conformal class
of torus. We will now describe these additional conformal equivalences between
standard tori arising from the SL(2,ZZ) action on IH.

The conformal equivalence between the elliptic curves IC/(ZZ+ τZZ) and IC/(ZZ−
1
τ
ZZ) arises from the fact that the Möbius transformation τ 7→ −1

τ
is associated with

the matrix
(

0 −1
1 0

)
which belongs to SL(2,ZZ). This transformation establishes a

conformal equivalence, and in particular, it provides a bijective correspondence be-
tween the conformal classes of elliptic curves associated with period ratios in the
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regions {τ ∈ IH : Re(τ) < 1} and {τ ∈ IH : Re(τ) > 1}. The following proposition
expresses this conformal equivalence in terms of standard tori.

Proposition 2 If 1 < R/r <
√

2, then the standard torus TR,r is conformally equiv-
alent to the standard torus T

R,
√

R2−r2 . Moreover, the map TR,r 7→ T
R,
√

R2−r2 is a

bijection between the set of standard tori TR,r such that 1 < R/r <
√

2, and the set
of standard tori TR,r such that

√
2 < R/r.

Proof: Recall that a := R/r. The imaginary part of the period ratio of the complex
torus biholomorphic to TR,r is ωa =

1√
a2−1

. The inequality 0 < ωa ≤ 1 is equivalent

to
√

2 < a. Thus, standard tori with
√

2 < R/r are biholomorphic to complex tori
with imaginary part of the period ratio in (0,1]. Similarly, the inequality ωa ≥ 1 is
equivalent to 1 < a <

√
2. Thus, standard tori with 1 < R/r < 2 are biholomorphic

to complex tori with imaginary part of the period ratio in (1,∞).

Now, consider the torus TR,r′ where r′ :=
√

R2 − r2. Let b = R/r′ = a√
a2−1

. So the

imaginary part of the period ratio for TR,r′ is ωb =
1

ωa
. Because of this, the complex

tori IC/(2πZZ+ iωaZZ) and IC/(2πZZ+ iωbZZ) are conformally equivalent because
their period ratios τa := ωa

2π
and τb := ωb

2π
are related by the SL(2,ZZ) Möbius trans-

formation τ 7→ −1
τ

. Finally, the bijection follows from the function f (a) := a√
a2−1

.

For 1 < a <
√

2, we have f (a)>
√

2, and this function provides a bijection between
the intervals (1,

√
2) and (

√
2,∞) as its derivative is negative, indicating it is strictly

decreasing. Therefore, the map TR,r 7→ T
R,
√

R2−r2 induces a bijection between the
specified sets of standard tori. ⊔⊓

3 The conformal classes of product tori

For 0 < a ≤ 1, let Sa be the product torus S1 × S1 endowed with the Riemannian
metric which in coordinates (θ ,ϕ) 7→ (eiθ ,eiϕ) takes the form

ga = dθ
2 +adϕ

2.

Every product torus (with a metric of the form bdθ 2+cdϕ2) where b,c > 0) is con-
formally equivalent to a torus of the form Sa for some a ∈ [1,∞). This can be seen
by scaling by

√
c/b (or

√
c/b).

Recall that the metric ga induces a complex structure Ja on Sa. The vector fields
X = ∂

∂θ
and 1

a
∂

∂ϕ
are orthogonal and satisfy

[X ,Y ] = 0 and g(X ,X) = g(Y,Y ).
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Furthermore, X and Y are ga–orthonormal. Proceeding as in Section 2, their flows
define analytic coordinates. The map

G([θ + is]) = (eiθ ,ei 1
a s)

defines a biholomorphism from IC/(ZZ+ i
aZZ) to (S1 × S1,Ja). These calculations

prove the following theorem.

Theorem 2 Let a > b > 0. Let Sa,b be the product torus S1 × S1 endowed with the
Riemannian metric which in coordinates (θ ,ϕ) 7→ (eiθ ,eiϕ) takes the form

ga = bdθ
2 +adϕ

2.

Then Sa,b is conformally equivalent to IC/(ZZ+ bi
a ZZ).

As a consequence of Theorems 1 and 2 we have

Corollary 2 The standard torus TR,r is conformally equivalent to the product torus

Sa where a =
√

R2

r2 −1.

4 Hopf Tori

First we summarize some relevant results of [4]. Let Q denote the quaternions and
let S3 be all the quaternions of norm 1. Let us indentify S2 with the unit sphere
in the real subspace of Q spanned by 1, j and k. Let q ∈ Q and suppose that q =
a+ ib+ c j+dk, for a,b,c,d ∈ IR, then

q̃ := a− ib+ c j+dk

is an antiautomorphism of Q. The version of the Hopf fibration π : S3 → S2 used
in [4] is defined by

π(q) := q̃q.

With the S1–action on the fibers defined by

(eiϕ ,q) 7→ eiϕ q,

the Hopf fibration π : S3 → S2 is a S1–principal bundle.

By definition a Hopf torus is the inverse under the projection π of a closed curve
of S2. Let c : [a,b]→ S2 be a smooth Jordan curve on S2. We define the associated
Hopf torus as

Tc := π
−1(c([a,b])),

We consider Tc as a complex torus endowed with the conformal class of the Rie-
mannian metric obtained by pulling back the standard Riemannian metric of S3 via
the inclusion Tc ↪→ S3.



Leonardo A. Cano Garcı́a 10

Let α be the connection 1–form of of the principal S1–bundle π : S3 → S2, as-
sociated with the Riemannian metric g of S3 inherited from the quaternion norm.
The horizontal bundle H := V⊥ is the orthogonal complement of the vertical bun-
dle V := Ker(π) with respect to g. Let η : [0,L] → S3 be any α–horizontal lift of
the Jordan curve p, parametrized by arc length t (where L is the length of η). The
function

χ(t + iϕ) = eiϕ
η(t)

is a universal covering map of the Hopf torus Tc. Moreover, χ is a holomorphic
function from IC to Tc (see [4, Proposition 1]) because the induced metric on IC via
χ satisfies

g(
∂

∂ t
χ,

∂

∂ t
χ) = 1 = g(

∂

∂ϕ
χ,

∂

∂ϕ
χ) = 1 and g(

∂

∂ϕ
χ,

∂

∂ t
χ) = 0. (9)

These equalities show that the induced metric is conformal to the Euclidean metric
on IC, and thus χ is holomorphic.

Since η is parametrized by arc length, its tangent vector η ′ has unit norm and is
orthogonal to η (when considering η as a vector in Q ∼= IR4). Following Pinkall [4],
there exists a function u : [a,b]→ span{ j,k} with |u|= 1 such that

η
′ = uη .

As pointed out in [4, Formulas (6)], the tangent vector to c is given by

p′(t) = 2η̃(t)u(t)iη(t).

This implies that if L is the length of the Jordan curve c, then L/2 is the length of
the curve η .

Since η(L/2) and η(0) both lie in the fiber π−1(c(0)), there exists a real number δ

such that
η(L/2) = eiδ

η(0).

Pinkall proves in [4, Proposition 1] that

δ = A(c)/2,

where A(c) is the (signed) enclosed area of the curve c, which we now define. Let
dV be the canonical volume form of S2. The signed enclosed area of c is then
naturally defined as

A(c) =
∫ ∫

C
dV, (10)

where C is a 2–chain chosen such that ∂C = c and
∫ ∫

C dV ∈ [−2π,2π).
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The Gaussian curvature of S2 is 1 at every point. If C is one of the two connected
components of S2 − p, then by the Gauss-Bonnet theorem (applied to the disk C),
we have:

Vol(c) =
∫ ∫

C
dV = 2π −

∫
c
kgds

where kg denotes the geodesic curvature of c, and the integral is taken over one
orientation of c. The signed enclosed area of c can also be expressed in terms of the
geodesic curvature as

A(c) =

{
2π −

∫
c kgds if 2π −

∫
c kgds < 2π.

2π +
∫

c kgds otherwise.
(11)

Building upon the summarized results from Pinkall [4], we now present the follow-
ing theorem:

Theorem 3 (c.f [4, Proposition 1]) The complex torus Tc associated to a Jordan
curve c : [a,b] → S2 is biholomorphic to IC/(2πZZ+ (A

2 + i L
2 )ZZ) where L is the

lenght of the curve c and A is the signed area enclosed by c.

According to [4, Equation (15)], the isoperimetric inequality on S2 implies that the
signed enclosed area A(c) and the length L(c) of any Jordan curve c satisfy

(A(c)/2−π)2 +(L(c)/2)2 ≥ π
2. (12)

In the plane with coordinates A/2, L/2 , the region defined by (12) includes the set

{a+ ib : b > 0,0 ≤ a ≤ π}.

This region, when combined with its reflection across the a = 0 axis, covers a fun-
damental domain of the action of SL(2,ZZ) on the upper half plane IH. Since the
orientation of a closed curve on S2 changes the sign of the enclosed area A(c) (as
per the definition), Hopf tori exhaust all possible conformal classes of Riemann sur-
faces of genus 1.

Via stereographic projections, every Hopf torus can be mapped conformally to a
torus embedded in IR3. Therefore, Theorem 3 implies the following theorem, which
relates to Garsia’s Conjecture:

Theorem 4 (c.f [4, Theorem 1]) Let X be a compact Riemann surface of genus 1
and let us denote g0 the Riemannian metric of IR3. Then, there exists an embedding
ϕ : S1 ×S1 → IR3 such that X and (S1 ×S1,ϕ∗g0) are conformally equivalent.

Pinkall proves in [4] that the embedding whose existence is claimed in Theorem 4
can be chosen as an algebraic surface of degree eight (see [4, Corollary, page 381]).
In Sections 4.1 and 4.2 we will determine the curves on S2 associated with product
tori and standard rotational tori via the Hopf fibration.
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4.1 Hopf tori and product tori

For 0 < t ≤ 1/2, let Ht denote to the product torus S1 × S1 equipped with the Rie-
mannian metric that, in the coordinates (θ ,ϕ) 7→ (eiθ ,eiϕ) takes the form

gt = t2dθ
2 +(1− t2)dϕ

2.

Every flat product torus (with a metric of the form Adθ 2 +Bdϕ2 where A,B are
real positive numbers) is conformally equivalent to a torus of the form Ht for some
t ∈ (0,1/2]. This can be seen by scaling the coordinates. The product torus Ht can
be isometrically embedded in the quaternions Q by

Φ(eiθ ,eiϕ) = t cos(θ)+ t sin(θ)i+
√

1− t2 cos(ϕ) j+
√

1− t2 sin(ϕ)k.

With a slight abuse of notation, we will also denote the image of Φ by Ht . This torus
Ht is invariant under the diagonal S1 action:

eis
Φ(eiθ ,eiϕ) = Φ(ei(θ+s),ei(ϕ+s)).

Since we have

π(Φ(θ ,ϕ)) = Φ̃Φ(θ ,ϕ) = 2t2 −1+2t
√

1− t2 (cos(θ −ϕ) j+ sin(θ −ϕ)k) ,

the image of St under the Hopf projection π(q) = q̃q is the circle pt on S2

parametrized by

s 7→ 2t2 −1+2t
√

1− t2 (cos(s) j+ sin(s)k) . (13)

It is straightforward to see that St is the Hopf torus associated with this circle pt .
Therefore, we can use Theorem 3 to calculate its conformal class as a point in the
moduli space M .

The signed area enclosed by pt is

A(t) = 4πt2

and its lenght is
L(t) = 4πt

√
1− t2,

Therefore, by Theorem 3, the complex torus St is biholomorphic to

IC/(2πZZ+(2πt2 +2πit
√

1− t2)ZZ).

Dividing the lattice by 2π , we get the conformally equivalent torus IC/(ZZ+(t2 +
it
√

1− t2)ZZ). Applying the Möbius transformation τ 7→ −1/τ , we obtain
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− 1
t2 + it

√
1− t2

=−1+ i

√
1− t2

t
.

This period ratio −1+ i
√

1−t2

t is SL(2,ZZ)–equivalent to i
√

1−t2

t by adding 1. Hence,

the product torus St is conformally equivalent to IC/(ZZ+ i
√

1−t2

t ZZ), which matches
the result claimed in Theorem 2 (with the identification t = b/a or t = a/b depending
on the parametrization). We have thus shown the following proposition.

Proposition 3 The conformal classes of flat product tori coincide with the confor-
mal classes of Hopf tori associated with circles on S2. Specifically, given a > 1, the
flat product torus Sa (with metric dθ 2+adϕ2) is conformally equivalent to the Hopf
torus Ht associated to the circle parametrized by (13) where t = 1√

a2+1
.

4.2 Hopf tori and standard tori

Let R > r > 0 and suppose that R/r >
√

2 and define b :=
√

R2

r2 −1 > 1. Corollary 2
implies that the standard torus TR,r is conformally equivalent to the product torus Sb
(with metric dθ 2 +bdϕ2), and Proposition 3 implies that Sb is conformally equiva-
lent to Ht(b) where t = 1√

b2+1
= r

R . We have thus proved the following corollary of

the previous sections.

Corollary 3 Let R > r > 0 and suppose that R/r >
√

2. The standard torus TR,r
is conformally equivalent to the Hopf torus Ht associated to the circle in S2

parametrized by (13) where t = r
R .

5 Conclusion and perspectives

This article determined the conformal classes of standard, product, and Hopf tori.
We showed standard and product tori are mutually conformally equivalent, and fur-
ther demonstrated that the conformal classes of flat product tori coincide with those
of Hopf tori associated with circles on S2, explicitly linking their defining param-
eters. This work clarifies the relationships between these geometric tori within the
moduli space of genus one Riemann surfaces.

Looking ahead, the theory of moduli spaces is often approached with the tools of
algebraic geometry, in contrast to the differential geometric perspective adopted in
this article. It would be interesting to explore whether the insights and structures
from the algebraic geometric viewpoint can be translated or related to the realm of
Hopf tori, which possesses a more pronounced differential geometric flavor.
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