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Abstract Alexandroff spaces, characterized by the property that arbitrary intersec-
tions of open sets remain open, play a fundamental role in topology and its applica-
tions. This article explores different methods for constructing Alexandroff spaces,
organized into several approaches. First, we begin with structural techniques includ-
ing characterizations of bases, the formation of subspace, and the opposite topol-
ogy. We then examine constructive operations such as intersections, products, and
quotients, highlighting how the Alexandroff property is preserved. These methods
provide various ways to generate new Alexandroff spaces from existing ones, shed-
ding light on their structural properties and interactions. A subsequent section in-
vestigates constructions based on morphisms, focusing on identification and final
topologies, as well as primal topologies defined via self-maps. The latter part of the
work deals with order-theoretic characterizations, highlighting the correspondence
between Alexandroff topologies and preorders, as well as Alexandroff topologies
appearing on locally finite graphs. Throughout, emphasis is placed on the preser-
vation of the Alexandroff condition, and the insights these perspectives offer for
further applications.
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1 Introduction

An Alexandroff space is a topological space in which the intersection of any collec-
tion of open sets is still open. This condition implies that the topology is completely
determined by the neighborhood structure of individual points, making Alexandroff
spaces particularly significant in order theory and discrete mathematics. Introduced
by Pavel Alexandroff in 1937 [1], these spaces naturally arise in various mathe-
matical contexts, including lattice theory, domain theory, and theoretical computer
science.

Definition 1 (Alexandroff space, [2]). A topological space (X ,τ) is said to be an
Alexandroff space if the intersection of any collection of open sets remains an open
set.

Example 1. If X is a finite set, and τ a topology on X , then (X ,τ) is an Alexandroff
space.

Example 2. Any set endowed with the discrete topology is Alexandroff, since every
subset is open in the discrete topology.

Example 3. R with the usual topology is not Alexandroff. For instance, the collec-
tion {(− 1

n ,
1
n ) : n ∈ N} is a family of open sets but its intersection is the singleton

{0}, and singletons are not open in the usual topology of R.

The first consequence of this definition is the union of any collection of closed
sets is still closed. A more important consequence is that each point in an Alexan-
droff space has a minimal open neighborhood.

Theorem 1. Let (X ,τ) a topological space. Then (X ,τ) is Alexandroff if and only if
each point x ∈ X has a minimal open neighborhood.

Proof. (→) Let (X ,τ) be an Alexandroff space and x ∈ X . Let us define the collec-
tion Nx = ∩{O ∈ τ : x ∈ O}. Then Nx is open for the space is Alexandroff. It is
also minimal in the order given by inclusion, for any other neighborhood U of x will
contain an open set G containing x, i.e., x ∈ G⊆U , hence Nx ⊆ G⊆U .

(←) Suppose that for each x ∈ X there exists a minimal open neighborhood Nx.
Let {Oi ∈ τ : i ∈ I} be an arbitrary family of open sets. If ∩i∈IOi = ∅, then the
intersection is open. If x ∈ ∩i∈IOi, then Oi is a neighborhood of x, hence Nx ⊆ Oi
for all i ∈ I, that is Nx ⊆∩i∈IOi ⊆Oi. However, this is also valid for any other point
in ∩i∈IOi, hence that every point in ∩i∈IOi is interior and ∩i∈IOi is open. Therefore,
(X ,τ) is Alexandroff. ⊓⊔

Theorem 2. The family of minimal open neighborhoods serves as a basis for the
topology in an Alexandroff space.

Proof. Let V be an open nonempty set in an Alexandroff space (X ,τ). Hence, for
every a ∈ V there is a minimal neighborhood Na ⊆ V , so that V =

⋃
Na for all

a ∈V . ⊓⊔
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2 Structural Constructions

This section explores structural aspects inherent to Alexandroff spaces, focusing on
the rol of bases, the construction of the opposite topology, and the formation of sub-
spaces, all examined in relation to the defining properties of Alexandroff topologies.

2.1 Basis for an Alexandroff Space

In the context of Alexandroff spaces, where arbitrary intersections of open sets are
also open, the behavior of the basis becomes particularly significant. It not only
determines the structure of the topology but also reflects and helps characterize the
Alexandroff property.

Theorem 3 (First characterization of an Alexandroff basis). Let X be a nonempty
set. A family B of subsets of X is a base for an Alexandroff topology on X if and
only if:

1. X =
⋃

B∈B B;
2. For every collection {Bi : i ∈ I} ⊆B and every point x ∈

⋂
i∈I Bi, there exists a

basis element B ∈B such that x ∈ B⊆
⋂

i∈I Bi.

Proof. Let X be a nonempty set.
(→). Suppose that B is a basis for an Alexandroff topology on X . Property 1 is

satisfied because B is a basis. Now consider the collection {Bi : i ∈ I} ⊆B and let
x ∈

⋂
i∈I Bi. Since each Bi is open, the intersection

⋂
i∈I Bi is open, and hence it is a

union of elements of the basis, i.e.,⋂
i∈I

Bi =
⋃
j∈J

B j

with B j ∈B, and therefore there exists j0 such that x ∈ B j0 .
(←). Suppose that B satisfies properties 1 and 2. Then if B1,B2 ∈B and x ∈

B1∩B2 we have x ∈ B3 ⊆ B1∩B2 where B3 ∈B by 2. Therefore, B is a base for a
topology τ(B) on X .

Moreover, let {Oi : i∈ I} ⊆ τ. If ∩i∈IOi =∅ then the intersection is open. Other-
wise, let x ∈ ∩i∈IOi. Then, for each i ∈ I there exists Bi ∈B such that x ∈ Bi ⊆ Oi.
Then there is B ⊆ ∩i∈IBi ∈B and x ∈ B ⊆ ∩i∈IOi. Since x is arbitrary, we deduce
that ∩i∈IOi is also open, hence τ(B) is Alexandroff. ⊓⊔

In fact, the second condition of the previous theorem is equivalent to requiring
that for each x ∈ X , the intersection⋂

{B ∈B : x ∈ B}

belongs to B, which leads to the following characterization.
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Theorem 4 (Second characterization of an Alexandroff basis). Let X be a nonempty
set. A family B of subsets of X is a base for an Alexandroff topology on X if and
only if:

1. X =
⋃

B∈B B;
2. For every x ∈ X,

⋂
{B ∈B : x ∈ B} ∈B.

Proof. We only need to prove the equivalence of the second condition. If it holds
that for every collection {Bi : i ∈ I} ⊆B and every point x ∈

⋂
i∈I Bi, there exists a

basis element B ∈B such that x ∈ B⊆
⋂

i∈I Bi, then for each x there exists Bx ∈B
such that

Bx ⊆
⋂
{B ∈B : x ∈ B}.

But since ⋂
{B ∈B : x ∈ B} ⊆ Bx,

it follows that
Bx =

⋂
{B ∈B : x ∈ B}.

Conversely, if for every x ∈ X the intersection
⋂
{B ∈B : x ∈ B} belongs to B,

then for any collection {Bi : i ∈ I} ⊆B and any x ∈
⋂

i∈I Bi, we choose

Bx =
⋂
{B ∈B : x ∈ B},

and clearly x ∈ Bx ⊆
⋂

i∈I Bi
⊓⊔

As a result, any family B that meets the conditions outlined above generates
an Alexandroff topology, as it guarantees that each point possesses a smallest open
neighborhood. We now present an example illustrating the construction of basis for
an Alexandroff topology

Fig. 1 Example 4: A nu-
merable family of concentric
balls can be a basis for an
Alexandroff topology on R2.
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Example 4. Let X = R2, and consider the Euclidean distance function d : X ×X →
R. For a fixed point a ∈ X , we define the set

B(a,n) = {x ∈ R2 : d(a,x)≤ n;n ∈ N}

as a ”ball” centered at a with radius n. The collection B = {B(a,n)}n∈N then forms
a basis for a topology on R2. This topology is Alexandroff, since every point x ∈R2

possesses a minimal open neighborhood within the topology generated by B.

2.2 The Opposite Topology

Alexandroff spaces naturally come in pairs. Because open sets remain open under
arbitrary intersections, their complementary closed sets must also be closed under
arbitrary unions. This property gives rise to what is known as the opposite topology.

Theorem 5. If (X ,τ) be an Alexandroff space, then the collection τo defined as:

τo = {X\U : U ∈ τ}

is also an Alexandroff topology on X.

Proof. It is readily seen that X and ∅ belong to τo, as ∅,X ∈ τ .

• Let V1,V2 ∈ τo, thus Vi = X\Ui with Ui ∈ τ . Then V1 ∩V2 = X\U1 ∩ X\U2 =
X\(U1∪U2). Hence V1∩V2 ∈ τo, for U1∪U2 ∈ τ .

• Suppose {Vi}i∈I is an arbitrary collection of open sets in τo, so that Vi = X\Ui
with Ui ∈ τ for all i ∈ I. Then:⋃

i∈I

Vi =
⋃
i∈I

X\Ui = X\
⋂
i∈I

Ui

and
⋂

i∈I Ui ∈ τ for τ is an Alexandroff topology, hence the union belong to τo.

Therefore, τo is hitherto a topology on X . However, the intersection
⋂

i∈I Vi of an
arbitrary family of open sets {Vi}i∈I in τo is also open, for:⋂

i∈I

Vi =
⋂
i∈I

X\Ui = X\
⋃
i∈I

Ui

and
⋃

i∈I Ui is closed in τ . Consequently, (X ,τo) is an Alexandroff space. ⊓⊔

2.3 Subspaces

For a topological space (X ,τ) and a subset Y ⊂ X , a topology can be induced on Y
by restricting the open sets of X to their intersections with Y . That is, for each open
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set O in X , the set A = O∩Y forms an open set in Y . The collection of such subsets,
denoted τY , defines a topology on Y , known as the relative topology. In this context,
Y is referred to as a subspace of X .

Theorem 6. Let (X ,τ) be an Alexandroff space and Y ̸= ∅ a subset of X. Then τY
is Alexandroff in Y .

Proof. Since Y ̸=∅, take y∈Y ⊂X , and let {U ∈ τ : y∈U } be the collection of all
open neighborhoods containing y. Then, each V = U ∩Y is an open neighborhood
of y in the relative topology τY . Defining Ny as the intersection:

Ny =
⋂
{V ∈ τY : y ∈ V }=

⋂
{U ∩Y ∈ τY : y ∈U }

it follows that Ny is minimal with respect to the inclusion order, Ny ̸=∅ for it con-
tains y, and it is open in the relative topology. Hence, Ny is a minimal open neigh-
borhood of y. The same reasoning applies to every y∈Y , therefore τY is Alexandroff
in Y by virtue of Theorem 1. ⊓⊔

3 Constructive Operations in Alexandroff Spaces

This section focuses on constructions via operations involving Alexandroff spaces,
that is, intersections, products, quotients.

3.1 Intersections

For a nonempty set X equipped with two topologies, τ1 and τ2, it is a well-
established result that their intersection τ1 ∩ τ2 also forms a topology on X . This
property extends to arbitrary intersections of topologies on X as well. Let {τi : i∈ I}
be an arbitrary collection of topologies over X , and let τ = ∩i∈Iτi. It can be shown
that X and ∅ belong to τ since they belong to each τi in the collection. If {Ui}i is an
arbitrary family of open sets in τ , then each Ui belongs to each one of the topologies
τi. Therefore ∪i∈IUi is open in τi for all i∈ I, hence it is open in τ . Last but not least,
if U1 and U2 are open sets in τ , they are also open sets on each τi in the collection;
therefore U1∩U2 ∈ τ .

Theorem 7 (Intersection of Alexandroff spaces). Any intersection of Alexandroff
topologies over X is also an Alexandroff topology on X.

Proof. Let {τi}i∈I be a collection of Alexandroff topologies over X . It is well estab-
lished that τ =

⋂
τi is a topology over X as well.

Let x ∈ X and {U j : x ∈U j ∈ τ} the collection of all open neighborhoods con-
taining x. Then Nx =

⋂
{U j : x ∈U j} is open and a neighborhood of x, being also

minimal in the sense of the inclusion order. If V is any other open neighborhood of
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x in τ , then V ∈ τi for all i ∈ I. This means that V ∈ {U j : x ∈ U j} and Nx ⊆ V .
Therefore, (X ,τ) is Alexandroff. ⊓⊔

Corolary. Finite intersection of Alexandroff topologies is also Alexandroff.

3.2 Products

Consider the n topological spaces (X1,τ1),(X2,τ2), ...,(Xn,τn), and define X =

∏
n
i=1 Xi as the cartesian product X1×X2× ...Xn. It has been established that a topol-

ogy on X can be obtained based on the topologies of each factor Xi in the product.
In the case of finite products, it has been proven that the Tychonoff topology and the
box topology coincide, as both are generated by a common basis of the form:

B = {O = O1×O2× ...On : Oi is open in Xi}

Let x = (x1,x2, ...xn) ∈ X and V is a neighborhood of x, then there exists a set of the
form V1×V2× ...×Vn subset of V , such that Vi is a neighborhood of xi ∈ Xi. Hence
there exist open sets Oi with xi ∈ Oi ⊆Vi for all i = 1...n.

Theorem 8 (Finite product of Alexandroff spaces). If (X1,τ1),(X2,τ2), ...,(Xn,τn)
are n Alexandroff spaces, then the product X = ∏

n
i=1 Xi is also an Alexandroff space.

Proof. Consider an element x=(x1,x2, . . . ,xn) in the Cartesian product X =∏
n
i=1 Xi.

Since each space (Xi,τi) is an Alexandroff space, every xi has a minimal open
neighborhood, denoted by Nxi ⊆ Xi, which forms a neighborhood basis at xi. Given
that the product of neighborhood bases at each xi results in a neighborhood basis
at (x1,x2, ...xn), it follows that the collection {Nx1 ×Nx2 . . .×Nxn} constitutes a
neighborhood basis at x. Moreover, since each of these neighborhoods is minimal,
the entire space X also satisfies the Alexandroff property. ⊓⊔

In the product space, one can define the canonical projection πi : X→Xi for each
coordinate i. Given an element a = (a1,a2, . . . ,an) ∈ X , the projection is defined as
πi(a) = ai. Now, if Ui is an open set in τi containing ai, then its preimage under πi
is given by:

π
−1
i (Ui) = X1×X2× . . .×Xi−1×Ui×Xi+1× . . .×Xn.

Since π
−1
i (Ui) is open in X , it follows that the projection maps are continuous.

Consequently, any open set in X can be expressed as:

O = O1×O2× . . .×On = π
−1
1 (O1)∩π

−1
2 (O2)∩ . . .∩π

−1
n (On).

This naturally leads to Tychonoff’s theorem, which generalizes this result to arbi-
trary products of topological spaces.
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Definition 2 (Tychonoff’s product topology). Let {(Xi,τi)}i∈I be an arbitrary col-
lection of topological spaces. The product space X = ∏i∈I Xi is endowed with a
topology whose basis consists of open sets of the form:

K⋂
k=1

π
−1
ik

(Oik)

where K ∈ N and each Oik is an open set in τik .

The following counterexample demonstrates that an arbitrary product of Alexan-
droff spaces is not necessarily Alexandroff.

Counterexample [6]. Let W = {x,y} and (W,τW ) be a Sierpiński space, namely,
τW = {∅,{x},W}. Then (W,τW ) is an Alexandroff space as well. Consider the fol-
lowing product:

∏
n∈N

Wn

with Wn = W . In Tychonoff’s product topology, only a finite number of compo-
nents in a product of open sets can differ from the entire space. This allows for the
construction of the following family of open sets {On}n∈N:

O1 = {x}×W ×W × ...

O2 =W ×{x}×W × ...

O3 =W ×W ×{x}× ...

...
On =W × ...×{x}...×W × ...

In each On, the only open set differing from W is {x} in the nth position, for every
n∈N. Consequently, each On is open in Tychonoff’s product topology, and {On}n∈N
forms an arbitrary family of open sets. However, the intersection⋂

n∈N
On = {x}×{x}×{x}× ...

is not an open set, as it does not satisfies the definition 2. Consequently, the given
product space is not Alexandroff.

3.3 Quotients

Given a topological space (X ,τ) and an equivalence relation ∼ on X , the quotient
set, denoted by X/∼, consists of all equivalence classes under ∼. For any a ∈ X , the
notation [a] represents the equivalence class of a, meaning
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[a] = {x ∈ X | x∼ a}.

The equivalence relation naturally defines a surjective function known as the canon-
ical quotient map, given by q : X→ X/∼, where q(a) = [a]. Similarly, the quotient
topology in X/∼ is defined so that a set U ⊆ X/∼ is open if and only if its preimage
under q, q−1(U), is open in X .

Define the collection τq = {O⊆ X/∼ : q−1(O) is open in X}. Then ∅ and X/∼
are in τq, for q−1(∅) = ∅ and q−1(X/∼) = X , both open in X . Let {Oi}i∈I be an
arbitrary collection of elements of τq. Since q−1(Oi) is open in X for each i∈ I, then⋃

i Oi is in τq, because q−1(
⋃

i Oi)=
⋃

i q
−1(Oi) is open in (X ,τ). Finally, if O1,O2 ∈

τq, then q−1(O1) and q−1(O2) are open in X ; hence O1 ∩O2 ∈ τq, as q−1(O1 ∩
O2) = q−1(O1)∩ q−1(O2) is open in X . Consequently, τq defines a topology on
X/∼, known as the quotient topology.

Theorem 9. Let (X ,τ) be an Alexandroff space and∼ an equivalence relation on X.
Then, with the quotient topology τq, the space X/∼ remains an Alexandroff space.

Proof. Let {Oi}i∈I be an arbitrary family of open sets in τq. By definition of quotient
topology, the preimage q−1(Oi) is open in X for each i∈ I. Since X is an Alexandroff
space, it follows that the intersection

⋂
i q
−1(Oi) remains open in X . Consequently,

q−1(
⋂

i Oi) =
⋂

i q
−1(Oi) is open, which implies that

⋂
i Oi is open in τq. Thus, the

quotient space (X/∼,τq) satisfies the Alexandroff property. ⊓⊔

4 Construction based on morphisms

This section looks into how topologies can be induced or transferred through func-
tions, such as identification maps and families of continuous functions. Specifically,
the identification topology arises from a surjective function, while the final topology
is induced by a family of maps making them jointly continuous. Lastly, the primal
topology is derived via a self-map f : X→ X . These approaches emphasize the role
of morphisms in shaping the topology of a space, rather than just manipulating open
sets directly.

4.1 Identification Topologies

Let X and Y be topological spaces, and let p : X → Y be a continuous function. The
map p is said to be an identification if, for every subset V ⊆ Y , the openness of
p−1(V ) in X ensures that V is open in Y . As noted by Mendelson in [3], the concept
of identification provides a fundamental approach to defining a topology on a set
using surjective functions.

Definition 3 (Identification topology, [3]). Let (X ,τX ) be a topological space, and
let p : X → Y be a surjective function onto a set Y . The identification topology on Y
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is defined as the collection of subsets A⊆Y for which the preimage p−1(A) is open
in X .

Thus, p gets to be an identification map from X to Y . Let τY be the set of all
subsets A⊆Y for which p−1(A) is open in X . It follows that Y ∈ τY since p−1(Y ) =
X is open in τX , and similarly, ∅ ∈ τY as well. Given an arbitrary collection {Ai}i∈I
of sets in τY , each preimage p−1(Ai) is open in X , implying that

⋃
i Ai also belongs

to τY , as
p−1(

⋃
i

Ai) =
⋃

i

p−1(Ai)

remains open in X . Furthermore, for any two sets A1,A2 ∈ τY , their intersection
A1∩A2 is also in τY , since

p−1(A1∩A2) = p−1(A1)∩ p−1(A2)

is open in X . Consequently, τY forms a topology on Y , known as the identification
topology.

Several identification examples have already been presented, such as the quotient
map q from X to X/∼ and the canonical projection πk from ∏i Xi to Xk.

Theorem 10 ([6]). If (X ,τX ) is an Alexandroff space and p : X → Y is a surjec-
tive map that defines the identification topology τY on Y , then (Y,τY ) inherits the
Alexandroff property from (X ,τX ).

Proof. Consider an arbitrary family of open sets {Ai}i∈I in Y , then
⋂

i∈I Ai is open
in τY , since

p−1(
⋂
i∈I

Ai) =
⋂
i∈I

p−1(Ai)

is open in X on account of X being an Alexandroff space. ⊓⊔

4.2 Final Topology

The concept of identification extends to a family of surjective maps from a collection
of topological spaces onto a common set, leading to what is known as the final
topology. Given a set Y and a family of topological spaces (Xi,τXi) with associated
functions F = { fi : Xi → Y}, the final topology τF on Y is the finest topology
that ensures that each fi remains continuous. Explicitly, a set U belongs to τF if
and only if f−1

i (U) is open in Xi for all i ∈ I. Consequently, the final topology can
be viewed as an indexed intersection of identification topologies. Therefore, if the
spaces (Xi,τXi) are Alexandroff, then (Y,τF ) also inherits the Alexandroff property.
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4.3 Primal Topologies

A notable category of Alexandroff spaces is known as primal spaces, initially re-
ferred to as functional Alexandroff spaces in a 2011 paper by Shirazi and Golestani
[4]. The term primal space was later introduced independently by Echi in 2012 [5].

Given a non-empty set X and a function f : X → X we say that τ f is the primal
topology generated by f if the open sets in τ f is the family {A⊆ X : f−1(A)⊂ A}.

Proposition 1. τ f is an Alexandroff topology.

Proof. 1. /0 ∈ τ f since f−1( /0) = /0.
2. X ∈ τ f because f−1(X) = X .
3. Consider the arbitrary family of open sets {Ai}i∈I , then

f−1(
⋃
i∈I

Ai) =
⋃
i∈I

f−1(Ai)⊆
⋃
i∈I

Ai,

the union of arbitrary family of open sets is an open set.
4. Consider the arbitrary family of open sets {Ai}i∈I , then

f−1(
⋂
i∈I

Ai) =
⋂
i∈I

f−1(Ai)⊆
⋂
i∈I

Ai,

the intersection of arbitrary family of open sets is an open set.
⊓⊔

Example 5. Consider X = N and the function f : N→ N defined by

f (n) =
{

3n+1 ; i f n is odd
n/2 ; i f n is even.

This function induces an Alexandroff topological space (N,τ f ) with a primal topol-
ogy. This Alexandroff space was studied in [8], where the famous Collatz conjecture
is characterized in terms of compactness and connectedness.

5 Alexandroff topologies via pre order

Given a set equipped with a preorder (X ,≤), for an element x we define the set of
elements greater than or equal to it as:

↑ x = {y ∈ X : x≤ y}.

Let the collection B = {↑ x : x ∈ X}. We show that this is a basis for a topology τ on
X [7].

Proposition 2. Let (X ,≤) be a preorder, the collection B = {↑ x : x ∈ X} is a basis
for an Alexandroff topology.
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Proof. We verify the two necessary conditions for B to be a basis:
(1) Covers the space: Let x ∈ X . Since the preorder ≤ is reflexive, we have x ≤

x, hence x ∈↑ x. This implies that every point x ∈ X belongs to some set in the
collection B, that is,

X =
⋃
x∈X

↑ x.

(2) Local intersections: Let ↑ a,↑ b ∈ B such that x ∈↑ a∩ ↑ b. Then a ≤ x and
b≤ x.

Let c := x, so x ∈↑ c ∈ B. We want to show that:

↑ c⊆↑ a∩ ↑ b.

Indeed, if y ∈↑ c, then c ≤ y, i.e., x ≤ y. Since a ≤ x ≤ y and b ≤ x ≤ y, by
transitivity of the preorder it follows that a≤ y and b≤ y, hence y ∈↑ a∩ ↑ b. Thus,

↑ x⊆↑ a∩ ↑ b,

and since x ∈↑ x, the condition is satisfied.
Therefore, B is a basis for a topology on X .
Now we will show that it is an Alexandroff topology:
We claim that arbitrary intersections of open sets U =

⋂
i∈I Ui are still open. Sup-

pose x ∈U , then x ∈↑ x⊆Ui for each i. Hence,

U =
⋃

x∈U

↑ x,

so U is open. ⊓⊔

6 Alexandroff topologies via graphs

Consider a locally finite graph G with no isolated vertices. For each vertex x∈V (G),
we denote by Ax the set of vertices adjacent to x. We construct the collection

SG = {Ax : x ∈V (G)}.

Since G has no isolated vertices, we have V (G) =
⋃

x∈V (G) Ax, and therefore the
collection SG is a subbasis for a topology. We will prove that this topology is Alexan-
droff.

Theorem 11 ([9]). Given a locally finite graph G, the topology generated by the
subbasis SG is an Alexandroff topology.

Proof. It is enough to prove that the arbitrary intersection of elements in SG is open.
Let T be a subset of vertices of G. If x ∈

⋂
t∈T At , then x ∈ At for each t ∈ T , which

implies that each t ∈ Ax, and hence T ⊆ Ax. Since G is locally finite, Ax is finite, and
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thus T is also finite. This means that if T is infinite, the intersection is empty; but if
T is finite, then

⋂
t∈T At is a finite intersection of open sets, and therefore open. ⊓⊔

Since this is an Alexandroff topology on the set of vertices, a natural question is:
what is the minimal neighborhood of a vertex x?

Proposition 3. Let G be a graph. For each vertex x of G, the set Ux =
⋂

y∈Ax Ay is
the minimal neighborhood of x.

Proof. Since SG is a subbasis, the minimal neighborhood of x is Ux =
⋂

y∈T Ay for
some set T of vertices. This implies that x ∈ Ay for each y ∈ T , and hence T ⊆ Ax.
Therefore,

⋂
y∈Ax Ay ⊆Ux. ⊓⊔

Example 6 (Alexandroff topology generated by a finite graph). Let G be a graph with
vertex set

V (G) = {a,b,c,d,e}

and edge set
E(G) =

{
{a,b},{a,c},{b,d},{c,d},{d,e}

}
.

Fig. 2 Example 6: Graph
induces Alexandroff topology.

This graph is finite, locally finite (each vertex has finite degree), and has no iso-
lated vertices.

For each vertex x ∈V (G), we define the adjacency set

Ax = {y ∈V (G) : {x,y} ∈ E(G)}.

The adjacency sets are:

Aa = {b,c}, Ab = {a,d}, Ac = {a,d}, Ad = {b,c,e}, Ae = {d}.

The collection SG = {Ax : x ∈V (G)} is a subbasis for a topology on V (G). This
topology is an Alexandroff topology, since it is generated by arbitrary (finite, in this
case) intersections of sets in the subbasis.
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The minimal neighborhoods Ux =
⋂

y∈Ax Ay for each vertex are:

Ua = Ab∩Ac = {a,d},
Ub = Aa∩Ad = {b,c},
Uc = Aa∩Ad = {b,c},
Ud = Ab∩Ac∩Ae = {d},
Ue = Ad = {b,c,e}.
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