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Abstract This article studies an algorithm to solve an optimal control problem in
a reservoir-people epidemiological model. The main objective of this work is to
identify optimal vaccination and treatment strategies that can be implemented while
minimizing the material and human costs associated with the epidemic. To achieve
this, we use the Pontryagin’s Maximum Principle, a mathematical result that pro-
vides the necessary conditions to find the characterization of the optimal control
associated with ordinary differential equations.
Additionally, numerical simulations are performed to validate the proposed method-
ology. It provides a tool for decision-making and the efficient implementation of
vaccination and treatment in epidemic scenarios, as well as facilitating the planning
of responses to future public health crises.

Keywords epidemiological models · Hamiltonian · numerical simulations · opti-
mal control · reservoir-people transmission model
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Resumen Este artı́culo estudia un algoritmo para resolver un problema de con-
trol óptimo en un modelo epidemiológico reservorio-personas. El principal objetivo
de este trabajo es identificar estrategias óptimas de vacunación y tratamiento que
puedan implementarse minimizando los costos materiales y humanos asociados con
la epidemia. Para lograr esto, se utiliza el Principio del Máximo de Pontryagin, un
resultado matemático que proporciona las condiciones necesarias para encontrar la
caracterización del control óptimo asociado con ecuaciones diferenciales ordinarias.
Además, se realizan simulaciones numéricas para validar la metodologı́a propuesta.
Proporciona una herramienta para la toma de decisiones y la implementación efi-
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ciente de la vacunación y el tratamiento en escenarios epidémicos, además de facilitar
la planificación de respuestas ante futuras crisis de salud pública.

Palabras clave control óptimo ·Hamiltoniano ·modelo de transmisión reservorio-
personas · modelos epidemiológicos · simulaciones numéricas

1 Introduction

In 1911, Ronald Ross developed a malaria model, contributing significantly to the
field of disease transmission [20]. In 1927, Anderson Gray McKendrick and William
Ogilvy Kermack developed a mathematical model to study the spread of the 1906
plague in India, which led to the formulation of the SIR (Susceptible-Infectious-
Recovered) model [18]. Over time, advancements in mathematical epidemiology led
to the development of the SEIR (Susceptible-Exposed-Infected-Recovered) model,
which extends the SIR framework by incorporating an incubation period before
individuals become infectious [6]. This aproach allows for a more accurate repre-
sentation of disease dynamics, making epidemiological models essential for under-
standing transmission patterns. The model choice depends on the disease’s specific
characteristics and the affected population. For example, COVID-19 and influenza
are both respiratory illnesses, but different viruses cause them and have distinct char-
acteristics. One key difference is their incubation periods, in COVID-19 (estimated
6.4 days) is longer than that of influenza type A (3.4 days) [17]. Understanding these
characteristics, these models aim to analyze disease transmission dynamics and help
create effective control strategies.

In late 2019, Wuhan-China, experienced an outbreak of Coronavirus Disease 2019
(COVID-19), caused by the novel coronavirus SARS-CoV-2. The outbreak rapidly
expanded, affecting all regions of China and subsequently spreading worldwide. On
March 11, 2020, the World Health Organization declared COVID-19 a pandemic
[1]. This illness exhibits various clinical symptoms, including fever, dry cough, and
fatigue, frequently accompanied by respiratory complications. Notably, SARS-CoV-
2 is highly transmissible, and most of the general population remains susceptible to
infection. The primary sources of the virus are wild animal hosts and then infected
individuals, with transmission occurring primarily through respiratory droplets and
direct contact [19].

In 2020, a Bats-Hosts-Reservoir-People (BHRP) transmission model of COVID-
19 from a presumed source of infection (bats) to humans was proposed in [5].
The model uses 14 ordinary differential equations and 25 coefficients representing
transition rates among 14 groups based on the SEIR model. The simplified Reservoir-
People transmission model assumes that the virus was introduced to humans via a
seafood market, excluding the bats-hosts route due to the unknown origin of the
infection. This model can be adapted for other diseases with similar transmission
patterns and can be used to formulate an optimal control problem to identify effective
strategies for controlling the spread of disease.
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The optimal control theory addresses controlling a system with variables that
can be manipulated from the outside to achieve the best result. This theory can be
applied in various fields like biology, economics, business, physics, and engineering,
which involve using Ordinary Differential Equations (ODE). In particular, optimal
control theory in the epidemiological field allows us to determine the most effective
control to combat epidemics. This includes strategies such as isolation, treatment,
and vaccination [1, 10], among others, to reduce infection rates and associated costs
[13]. Characterizing the solution is one of the most challenging tasks in this field.
In this sense, Pontryagin’s Maximum Principle (PMP) emerges as a fundamental
theory that provides optimality conditions, which can be used to characterize the
solution [2, 11].

In this article, we present an algorithm to solve an optimal control problem based
on the reservoir-people transmission model (RP) studied on [5], which describes
the progression of an epidemic among five population groups. Disease transmission
dynamics are analyzed in environments that act as sources of infection. We examine
control strategies, such as vaccination and treatment, and apply optimal control
theory and PMP to establish the conditions for optimal control. Finally, numerical
simulations demonstrate the most effective application of vaccination and treatment
strategies.

The article is structured as follows. Sect. 1.2 presents the problem statement
for disease control using the model given in [5] and outlines the optimal control
characterization using PMP [2]. In Sect. 1.3, numerical simulations are performed
to identify suitable control strategies. The article ends with some final conclusions
in Sect. 1.4.

2 Materials and Methods

This section presents the problem formulation, including an Ordinary Differential
Equations (ODE) system and an objective function to minimize the application costs.
Using Pontryagin’s Maximum Principle, we then derive the characterization of the
solution.

2.1 Statement of the optimal control problem

We introduce the reservoir-people epidemiological model, studied in [5], which
simplifies the dynamics of a virus by excluding births and deaths unrelated to the
disease or other external factors. The population is divided into five groups: suscep-
tible individuals (𝑆), exposed individuals (𝐸), symptomatic infected individuals (𝐼),
asymptomatic infected individuals (𝐴), and removed individuals (𝑅), including both
recovered and deceased individuals. The birth and death rates, represented by 𝑛 and
𝑚, respectively, account for the inflow and outflow of individuals in the community.
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The epidemiological model introduced in [5] considers the following parameters.
The incubation and latent periods of human infection are represented as 1/𝑤 and
1/�̄�, respectively. The model also incorporates the dynamics of the virus, which
resides in a reservoir denoted by 𝑊 that is the source of infection. Symptomatic and
asymptomatic infected individuals can introduce the virus into 𝑊 at rates 𝜇 and �̄�.
The virus subsequently leaves the reservoir at a rate of 𝜖𝑊 , where 1/𝜖 represents the
life period of the virus.

Furthermore, the durations of infection for the symptomatic (𝐼) and asymptomatic
(𝐴) groups are characterized by 1/𝛾 and 1/�̄�, respectively. The proportion of asymp-
tomatic infections is denoted by 𝛿, with the remaining fraction, (1− 𝛿), representing
symptomatic infections. The susceptible group contracts the infection through con-
tact with either 𝑊 or the infected group 𝐼, with transmission rates denoted by 𝑏𝑊
and 𝑏𝑝 , respectively. The transmissibility of 𝐴 is 𝜅 times that of 𝐼, where 0 ≤ 𝜅 ≤ 1.

In this context, the optimal control problem introduces the functions 𝑢1 and 𝑢2,
which represent vaccination and treatment, respectively. These control functions
aim to maximize the number of recovered individuals, minimize the number of
infected and susceptible individuals, and reduce the costs associated with their
implementation.

The parameters of the optimal control problem are detailed in Table 1.

Table 1 Parameters of the (RP) model

Notation Description

𝐴1 The cost of vaccination
𝐴2 The cost of treatment
𝑇 The infection timing
𝑛 The birth and inflow rate of people
𝑚 The death and outflow rate of people
𝑏𝑝 The transmission rate from 𝐼 to 𝑆

𝜅 The transmissibility of 𝐴 with respect to that of 𝐼
𝑏𝑊 The transmission rate from 𝑊 to 𝑆

𝛿 The proportion of asymptomatic infections among the population
(1 − 𝛿 ) The proportion of symptomatic infection rate of people
1/𝑤𝑝 The incubation period experienced by individuals
1/𝛾 The duration of the infectious period for symptomatic individuals.
1/�̄� The latent period of people
1/�̄� The duration of the infectious period for asymptomatic people
1/𝑒 The virus lifespan in 𝑊

𝑐 The relative shedding coefficient of 𝐴 compared to 𝐼

Figure 1 illustrates disease dynamics, with the interaction between the reservoir
and the human population. It also includes control strategies (vaccination and treat-
ment). 𝑊 represents the reservoir where the virus resides and multiplies. The five
compartments of the population are susceptible (𝑆), exposed (𝐸), symptomatic (𝐼),
asymptomatic (𝐴), and removed (𝑅) people. Arrows illustrate the flow of individuals
between compartments. The diagram includes parameters that are essential for mod-
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Fig. 1 Framework of the Optimal Control Problem

eling the dynamics of disease transmission and assessing the impact of the controls
𝑢1 and 𝑢2 on controlling the spread of infections originating from the reservoir.

The optimal control problem (OPC) is the following

min
(𝑢1 ,𝑢2 ) ∈U

𝐽 (𝑢1 (𝑡), 𝑢2 (𝑡)) =
{
𝑆(𝑇) + 𝐼 (𝑇) − 𝑅(𝑇)
+
∫ 𝑇

0

(
𝜆1
2 𝑢2

1 (𝑡) +
𝜆2
2 𝑢2

2 (𝑡) + 𝑆(𝑡) + 𝐼 (𝑡) − 𝑅(𝑡)
)
𝑑𝑡

subject to:

(RP)



¤𝑆 = 𝑛 − 𝑚𝑆 − 𝑏𝑝𝑆(𝐼 + 𝜅𝐴) − 𝑏𝑊𝑆𝑊 − 𝑢1𝑆,

¤𝐸 = 𝑏𝑝𝑆(𝐼 + 𝜅𝐴) + 𝑏𝑊𝑆𝑊 − (1 − 𝛿)𝑤𝑝𝐸

−𝛿�̄�𝐸 − 𝑚𝐸,

¤𝐼 = (1 − 𝛿)𝑤𝑝𝐸 − (𝛾 + 𝑚)𝐼 − 𝑢2𝐼,
¤𝐴 = 𝛿�̄�𝐸 − (�̄� + 𝑚)𝐴,
¤𝑅 = 𝛾𝐼 + �̄�𝐴 − 𝑚𝑅,

¤𝑊 = 𝜖 (𝐼 + 𝑐𝐴 −𝑊).

This includes an objective function 𝐽, which will be minimized subject to the
reservoir-people model. The objective function considers both the time interval
and the final state, emphasizing reducing the susceptible and infected groups while
increasing the number of recovered individuals at the final time.

The functions 𝑢1 (𝑡) and 𝑢2 (𝑡) denote vaccination and treatment strategies, re-
spectively. The set of admissible controls is

U =
{
(𝑢1, 𝑢2) ∈ (𝐿∞ (0, 𝑇))2 : 𝑎1 ≤ 𝑢1 (𝑡) ≤ 𝑏1, 𝑎2 ≤ 𝑢2 (𝑡) ≤ 𝑏2

}
, (1)
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where 0 ≤ 𝑎1 < 𝑏1 ≤ 1 and 0 ≤ 𝑎2 < 𝑏2 ≤ 1. The two constants 𝜆1 and 𝜆2 represent
the costs associated with the use of controls 𝑢1 (𝑡) and 𝑢2 (𝑡), respectively. This means
that as the value of either constant increases, the cost of applying the corresponding
control also rises.

Besides, the objective function is a quadratic function, which implies that it is
a convex function. Consequently, the existence of the solution is derived from the
Filippov-Cesari theorem [7, 15, 11].

2.2 Characterization of the solution

In this subsection, we derive the first-order optimality conditions by constructing
the Hamiltonian H and applying PMP. The PMP provides the necessary conditions
for solving optimal control problems by transforming the problem into a system
of equations that include adjoint variables. These adjoint variables characterize the
optimal control problem, and the control is obtained by minimizing the Hamiltonian
with respect to these variables [2, 11].

We simplify the notation in the following way

x(𝑡) = [𝑆(𝑡), 𝐸 (𝑡), 𝐼 (𝑡), 𝐴(𝑡), 𝑅(𝑡),𝑊 (𝑡)]𝑇 ,
u(𝑡) = [𝑢1 (𝑡), 𝑢2 (𝑡)]𝑇 ,
p(𝑡) = [𝑝1 (𝑡), 𝑝2 (𝑡), 𝑝3 (𝑡), 𝑝4 (𝑡), 𝑝5 (𝑡), 𝑝6 (𝑡)]𝑇 ,

and the Hamiltonian is expressed as:

H =
𝜆1
2
𝑢2

1 +
𝜆2
2
𝑢2

2 + 𝑆 + 𝐼 − 𝑅 + 𝑝1
(
𝑛 − 𝑚𝑆 − 𝑏𝑝𝑆(𝐼 + 𝜅𝐴) − 𝑏𝑊𝑆𝑊 − 𝑢1𝑆

)
+ 𝑝2

(
𝑏𝑝𝑆(𝐼 + 𝜅𝐴) + 𝑏𝑊𝑆𝑊 − (1 − 𝛿)𝑤𝑝𝐸 − 𝛿�̄�𝐸 − 𝑚𝐸

)
+ 𝑝3

(
(1 − 𝛿)𝑤𝑝𝐸 − (𝛾 + 𝑚)𝐼 − 𝑢2𝐼

)
+ 𝑝4 (𝛿�̄�𝐸 − (�̄� + 𝑚)𝐴)
+ 𝑝5 (𝛾𝐼 + �̄�𝐴 − 𝑚𝑅)
+ 𝑝6 (𝜖 (𝐼 + 𝑐𝐴 −𝑊)) (2)

which includes the control and the state variables, u∗ = [𝑢∗1, 𝑢
∗
2]

𝑇 and x∗ (𝑡) =

[𝑆∗ (𝑡), 𝐸∗ (𝑡), 𝐼∗ (𝑡), 𝐴∗ (𝑡), 𝑅∗ (𝑡),𝑊∗ (𝑡)]𝑇 , respectively. Besides, the Hamiltonian
given by Equation 2 introduces an adjoint state p(𝑡), which serves to character-
ize the optimal control. The PMP ensures that the solution satisfies

𝜕H
𝜕u

(𝑡) = 0, ¤x(𝑡) = 𝜕H
𝜕p

(𝑡), ¤p(𝑡) = −𝜕H
𝜕x

(𝑡).

The optimality conditions for the problem are:
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𝜕H
𝜕𝑢1

(𝑡)
]

u(𝑡 )=u∗
= 0,

[
𝜕H
𝜕𝑢2

(𝑡)
]

u(𝑡 )=u∗
= 0,

and then replacing the above conditions, we obtain:

𝜆1𝑢
∗
1 (𝑡) − 𝑆(𝑡)𝑝1 (𝑡) = 0, 𝜆2𝑢

∗
2 (𝑡) − 𝐼 (𝑡)𝑝3 (𝑡) = 0. (3)

Besides, by considering u∗ ∈ U ( Equation 1), then the writing of Equations 3 can
be simplified respectively, as follows:

𝑢∗1 (𝑡) = min
{
𝑏1; max

{
𝑎1;

𝑆(𝑡)𝑝1 (𝑡)
𝜆1

}}
, 𝑢∗2 (𝑡) = min

{
𝑏2; max

{
𝑎2;

𝐼 (𝑡)𝑝3 (𝑡)
𝜆2

}}
.

The state equations are given by (RP), and the adjoint equations are written like:

¤𝑝1 (𝑡) = −𝜕H
𝜕𝑆

(𝑡), ¤𝑝2 (𝑡) = −𝜕H
𝜕𝐸

(𝑡), ¤𝑝3 (𝑡) = −𝜕H
𝜕𝐼

(𝑡),

¤𝑝4 (𝑡) = −𝜕H
𝜕𝐴

(𝑡), ¤𝑝5 (𝑡) = −𝜕H
𝜕𝑅

(𝑡), ¤𝑝6 (𝑡) = −𝜕H
𝜕𝑊

(𝑡),

which are equivalent to

¤𝑝1 (𝑡) = −1 + 𝑚𝑝1 + 𝑏𝑝𝑝1 (𝐼 + 𝜅𝐴) + 𝑏𝑊 𝑝1𝑊 + 𝑢1𝑝1 − 𝑏𝑝𝑝2 (𝐼 + 𝜅𝐴) − 𝑏𝑊 𝑝2𝑊,

¤𝑝2 (𝑡) = 𝑝2 (1 − 𝛿)𝑤𝑝 + 𝛿𝑝2�̄� + 𝑚𝑝2 + 𝑝3 (𝛿 − 1)𝑤𝑝 − 𝛿�̄�𝑝4,

¤𝑝3 (𝑡) = −1 + 𝑏𝑝𝑆(𝑝1 − 𝑝2) + (𝛾 + 𝑚 + 𝑢2)𝑝3 − 𝛾𝑝5 − 𝜖 𝑝6,

¤𝑝4 (𝑡) = 𝑏𝑝𝜅𝑆(𝑝1 − 𝑝2) + 𝑝4 (�̄� + 𝑚) − �̄� 𝑝5 − 𝜖𝑐𝑝6,

¤𝑝5 (𝑡) = 1 + 𝑚𝑝5,

¤𝑝6 (𝑡) = 𝑏𝑊𝑆(𝑝1 − 𝑝2) + 𝜖 𝑝6.

The adjoint equations are completed with the following transversality conditions at
final time:

𝑝1 (𝑇) = 1, 𝑝2 (𝑇) = 0, 𝑝3 (𝑇) = 1, 𝑝4 (𝑇) = 0, 𝑝5 (𝑇) = −1, 𝑝6 (𝑇) = 1.

3 Results and Discussion

This section presents numerical simulations of the solution of the optimal control
problem using the approach presented in the above section. The code was generated
in MATLAB and is available in [16]
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3.1 Numerical simulations

The parameters for the numerical simulations correspond to the transmission of
SARS-CoV-2 in Wuhan City during 2020. Next, we estimate the parameters using
the following facts and assumptions [4, 5, 12].

• The mean incubation period is 5.2 days. We assume that the incubation period
and the latent period are the same. Thus, 𝑤𝑝 = �̄� = 0.1923, see [4].

• There is an average delay of 5 days between symptom onset and case detection
or hospitalization. The estimated mean duration from illness onset to the first
medical visit is 5.8 days. In this study, the infectious period is assumed to be 5.8
days, leading to 𝛾 = 0.1724, [4].

• Due to the lack of data on the proportion of asymptomatic infections, we set a
baseline value of 0.5 for the simulation, that is, 𝛿 = 0.5. It serves as a starting point
for the model, but it is important to note that this is a hypothetical assumption
made in the absence of real data on asymptomatic infections.

• In the absence of evidence on the transmissibility of asymptomatic infections,
we assume it to be 0.5 times that of symptomatic infections (𝜅 = 0.5), similar to
the value observed for influenza [12]. Additionally, we assume that the relative
shedding rate of 𝐴 compared to 𝐼 is 0.5, leading to 𝑐 = 0.5.

• Based on the number of body temperature screenings of passengers, mobility
studies, and population data collected in Wuhan in January 2020, the rate of
people traveling from Wuhan is set at 0.00018. Consequently, the rate of people
entering and exiting Wuhan is taken as 0.00018 per day (𝑛 = 𝑚 = 0.00018), see
[5].

• The parameters 𝑏𝑝 and 𝑏𝑊 were estimated to align the model’s outputs as closely
as possible with real-world observational data, c.f. [5].

• At the start of the simulation, we assume the virus prevalence in the market to be
1 in 100,000. This assumption provides an initial condition that allows the model
to simulate the disease dynamics starting with a low level of infection.

• Since SARS-CoV-2 is an RNA virus, we assume it degrades quickly in the
environment but can persist for a longer period (up to 10 days) in unknown hosts
in a crowded place. We set 𝜖 = 0.1, which represents the rate at which viral
viability decays in the environment or within hosts.

Furthermore, it is assumed that only 30% of the population is subjected to vac-
cination and treatment processes, meaning that 𝑎1 = 0, 𝑎2 = 0, 𝑏1 = 0.3, and
𝑏2 = 0.3.

The complete selection of parameters for the numerical simulations is detailed in
Table 2.
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Table 2 Parameters estimation

Parameter Numerical value Parameter Numerical value

𝜆1 1.0000 𝜆2 1.0000
𝑇 10.000 𝑛 0.0018
𝑚 0.0018 𝑏𝑝 0.5000
𝜅 0.5000 𝑏𝑊 0.8000
𝛿 0.5000 𝑤𝑝 0.1923
𝛾 0.1724 �̄� 0.1923
�̄� 0.1724 𝜖 0.1000
𝑐 0.5000

Now, we introduce an algorithm to solve (OCP), which can be extended to many
similar problems. Specifically, we combine the characterization obtained through
PMP with Algorithm 1, based in [9]. The main complication arises because the state
equation is defined at the initial time, while the adjoint equation is defined at the final
time. This results in a non-trivial computational challenge for solving the optimal
control problem.
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Algorithm 1: Algorithm for solving (OCP)
Input: Initial conditions and parameters
Output: Controls
Result: Optimal controls
Initialization;
for 𝑖 = −M, ..., 0 do

𝑆𝑖 = 𝑆0; 𝐸𝑖 = 𝐸0; 𝐼𝑖 = 𝐼0; 𝐴𝑖 = 𝐴0; 𝑅𝑖 = 𝑅0; 𝑊𝑖 = 𝑊0; 𝑢𝑖1 = 0; 𝑢𝑖2 = 0;
end
for 𝑖 = M, ..., 2M do

𝑝𝑖1 = 1; 𝑝𝑖2 = 0; 𝑝𝑖3 = 1; 𝑝𝑖4 = 0; 𝑝𝑖5 = −1; 𝑝𝑖6 = 0;
end
Main iteration;
for 𝑖 = 0, ...,M − 1 do

𝑆𝑖+1 = 𝑆𝑖 + ℎ[𝑛 − 𝑚𝑆𝑖 − 𝑏𝑝𝑆𝑖 (𝐼𝑖 + 𝜅𝐴𝑖) − 𝑏𝑊𝑆𝑖𝑊𝑖 − 𝑢𝑖1𝑆𝑖];
𝐸𝑖+1 = 𝐸𝑖 + ℎ[𝑏𝑝𝑆𝑖 (𝐼𝑖 + 𝜅𝐴𝑖) + 𝑏𝑊𝑆𝑖𝑊𝑖 − (1− 𝛿)𝑤𝑝𝐸𝑖 − 𝛿�̄�𝐸𝑖 −𝑚𝐸𝑖];
𝐼𝑖+1 = 𝐼𝑖 + ℎ[(1 − 𝛿)𝑤𝑝𝐸𝑖 − (𝛾 + 𝑚)𝐼𝑖 − 𝑢𝑖2𝐼𝑖];
𝐴𝑖+1 = 𝐴𝑖 + ℎ[𝛿�̄�𝐸𝑖 − (�̄� + 𝑚)𝐴𝑖]; 𝑅𝑖+1 = 𝑅𝑖 + ℎ(𝛾𝐼𝑖 + �̄�𝐴𝑖 − 𝑚𝑅𝑖);
𝑊𝑖+1 = 𝑊𝑖 + ℎ[𝜖 (𝐼𝑖 + 𝑐𝐴𝑖 −𝑊𝑖)];
𝑝M−𝑖−1

1 = 𝑝M−𝑖
1 − ℎ[−1 + 𝑚𝑝M−𝑖

1 + 𝑏𝑝𝑝
M−𝑖
1 (𝐼𝑖+1 + 𝜅𝐴𝑖+1) +

𝑏𝑊 𝑝M−𝑖
1 𝑊𝑖+1 + 𝑢𝑖1𝑝

M−𝑖
1 − 𝑏𝑝𝑝

M−𝑖
2 (𝐼𝑖+1 + 𝜅𝐴𝑖+1) − 𝑏𝑊 𝑝M−𝑖

2 𝑊𝑖+1];
𝑝M−𝑖−1

2 = 𝑝M−𝑖
2 − ℎ[𝑝M−𝑖

2 (1− 𝛿)𝑤𝑝 + 𝛿𝑝M−𝑖
2 �̄� +𝑚𝑝M−𝑖

2 + 𝑝M−𝑖
3 (𝛿 −

1)𝑤𝑝 − 𝛿�̄�𝑝M−𝑖
4 ]; 𝑝M−𝑖−1

3 = 𝑝M−𝑖
3 − ℎ[−1 + 𝑏𝑝𝑆𝑖+1 (𝑝M−𝑖

1 − 𝑝M−𝑖
2 ) +

(𝛾 + 𝑚 + 𝑢𝑖2)𝑝
M−𝑖
3 − 𝛾𝑝M−𝑖

5 − 𝜖 𝑝M−𝑖
6 ]; 𝑝M−𝑖−1

4 =

𝑝M−𝑖
4 − ℎ[𝑏𝑝𝜅𝑆𝑖+1 (𝑝M−𝑖

1 − 𝑝M−𝑖
2 ) + 𝑝M−𝑖

4 (�̄� +𝑚) − �̄� 𝑝M−𝑖
5 − 𝜖𝑐𝑝M−𝑖

6 ];
𝑝M−𝑖−1

5 = 𝑝M−𝑖
5 − ℎ[1 + 𝑚𝑝M−𝑖

5 ];
𝑝M−𝑖−1

6 = 𝑝M−𝑖
6 − ℎ[𝑏𝑊𝑆𝑖+1 (𝑝M−𝑖

1 − 𝑝M−𝑖
2 ) + 𝜖 𝑝M−𝑖

6 ];

𝑢𝑖+1
1 = min{𝑏1; max{𝑎1; 𝑆𝑖+1 𝑝

M−𝑖
1

𝜆1
}};

𝑢𝑖+1
2 = min{𝑏2; max{𝑎2; 𝐼𝑖+1 𝑝

M−𝑖
3

𝜆2
}};

end
Final results;
for 𝑖 = 1, ...,M do

𝑆∗ (𝑡𝑖) = 𝑆𝑖; 𝐸∗ (𝑡𝑖) = 𝐸𝑖; 𝐼∗ (𝑡𝑖) = 𝐼𝑖; 𝐴∗ (𝑡𝑖) = 𝐴𝑖; 𝑅∗ (𝑡𝑖) = 𝑅𝑖;
𝑊∗ (𝑡𝑖) = 𝑊𝑖; 𝑢∗1 (𝑡𝑖) = 𝑢𝑖1; 𝑢∗2 (𝑡𝑖) = 𝑢𝑖2;

end

Algorithm 1 is a numerical variant of the forward Euler method, incorporating
a step size and integrating temporal iterations for both state and adjoint equations;
review [9, 3, 14] for further information.
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3.2 Graphical summaries and Comments

Figure 2 illustrates the dynamics of the susceptible population under different sce-
narios: no control (red line), treatment only (blue line), vaccination only (brown
line), and both controls (green line). In the no-control scenario, both 𝑢1 = 0 and
𝑢2 = 0. The blue line represents the population with treatment but no vaccination
(𝑢1 = 0 and 𝑢2 ≠ 0). The brown line shows the dynamics when only vaccination
is applied (𝑢1 ≠ 0 and 𝑢2 = 0). The green curve corresponds to the case where
both vaccination and treatment are used (𝑢1 ≠ 0 and 𝑢2 ≠ 0). This last scenario
highlights that, without vaccination, many people remain virus carriers. However,
with treatment alone, susceptibility is higher than in the no-control scenario because
individuals who recover from the infection may become susceptible again.

0 2 4 6 8 10

0

0.2

0.4

0.6

𝑡

𝑆
(𝑡
)

Without control
With treatment

With vaccination
Both controls

Fig. 2 Evolution of susceptible population under different control strategies

Figure 3 shows the dynamics of the exposed population under different control
combinations, similar to the previous case. Using only treatment control reduces the
number of exposed individuals, but vaccination plays a key role in further decreasing
the size of the exposed group. As in the susceptible population case, many individuals
remain exposed without vaccination. No significant differences are observed in the
exposed population when vaccination control is added to the treatment scenario. In
conclusion, vaccination notably reduces the number of exposed individuals.
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Fig. 3 Evolution of exposed population under different control strategies

0 2 4 6 8 10

2

4

6

·10−2

𝑡

𝐼
(𝑡
)

Without control

With treatment

With vaccination

Both controls

Fig. 4 Evolution of infected population under different control strategies

Figure 4 shows the behavior of the infected group under different control strate-
gies, highlighting the effectiveness of vaccination in the susceptible population and
treatment in the infected group. The intersection point between the blue and brown
lines illustrates the interaction between both control strategies, which can be ex-
plained by the dynamics of the model (RP). This helps us assess each control’s
performance based on its application’s timing. Vaccination is crucial in reducing the
number of infected individuals, even when treatment is applied. For instance, we
observe an increase in the infected group in the blue line, representing the scenario
where only treatment is applied. The green line assures the importance of using both
controls to rapidly and effectively reduce the infected population. Figure 5 shows
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that the number of asymptomatic individuals increases in the absence of vaccination,
which is expected since vaccination acts before infection. This difference becomes
more noticeable later in time, specifically for 𝑡 > 3. Both controls are effective, but
vaccination has a more significant impact than treatment on asymptomatic individ-
uals.
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With vaccination
Both controls

Fig. 5 Evolution of asymptomatic population under different control strategies

The effectiveness of treatment and preventive vaccination is shown in the removed
case (recovered and deceased) in Figure 6. The interpretation of this figure requires
careful consideration, as a higher number of removed individuals does not necessarily
indicate that more people are being saved; in fact, it could suggest the opposite.
Vaccination directly influences the recovered group by preventing a rapid increase
in infections. Notably, the number of removed individuals is the highest in the red
scenario (no control). In this case, we interpret as those who could not recover from
the disease (deceased) and were removed from the system.
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Fig. 6 Evolution of removed population under different control strategies
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Fig. 7 Evolution of virus under different control strategies

Figure 7 illustrates the virus dynamics in the reservoir. A reduction in virus density
is achieved through vaccination and treatment. In this analysis period, treatment has
a greater effect than vaccination, as infected individuals transmit the virus directly
into the reservoir. However, analyzing the trends of the curves, vaccination will play
a more prominent role over a longer period.
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Fig. 8 Optimal vaccination dynamics with and without treatment during an epidemic

Regarding control functions, Figure 8 illustrates the vaccination control when ap-
plied (either alone or in combination with treatment). When vaccination is activated,
it operates at full capacity — 30%, as predetermined — which aligns with similar
cases in [14]. The control is most effective at the beginning of the epidemic and
gradually decreases as the number of susceptible individuals declines.
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Fig. 9 Optimal treatment dynamics with and without vaccination during an epidemic

However, treatment control behaves differently when combined with vaccination.
As shown in Figure 9, treatment is no longer necessary after a certain point. In
the blue scenario, where only treatment is applied, it is effective before 𝑡 = 5.
However, when combined with vaccination, its effectiveness extends beyond 𝑡 = 7.
This highlights the difference between using both controls simultaneously versus
individually.
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4 Conclusions

This study examined an optimal control problem for a disease transmission model
between reservoirs and populations, aiming to minimize infection rates while op-
timizing the use of vaccination and treatment strategies. By formulating a mathe-
matical framework and applying Pontryagin’s maximum principle, we characterized
the optimal control strategies and validated their effectiveness through numerical
simulations.

The results highlight vaccination’s crucial role in reducing the number of suscep-
tible, exposed, and infected individuals. Preventive measures significantly decrease
the spread of the disease, whereas treatment alone, while beneficial, may not be
sufficient to control the epidemic effectively. Combining both controls proves to be
the most effective strategy, leading to a faster and more reduction in infection.

Another key finding is that the interpretation of removed cases requires careful
consideration. A higher number of removed individuals does not necessarily imply
better health outcomes, as it may include individuals who did not survive the disease.
This reinforces the importance of preventive measures in reducing mortality.

The study also emphasizes the dynamic nature of control strategies. Vaccination
efforts are most impactful at the beginning of an outbreak, gradually decreasing
as the number of susceptible individuals declines. Meanwhile, treatment strategies
show varying levels of effectiveness depending on their timing and whether they
are combined with preventive measures. The interplay between these interventions
highlights the importance of adaptive strategies rather than static ones.

From a methodological perspective, implementing numerical algorithms to solve
the optimal control problem allowed for an efficient identification of cost-effective
strategies. The approach presented in this study provides a framework that can
be adapted to real-world scenarios, offering insights into the optimal allocation of
healthcare resources during epidemics.

In future work, a sensitivity analysis can be conducted concerning the key pa-
rameters of the model, particularly the person-to-person transmission rate (𝑏𝑝) and
the effectiveness of treatment (𝑢2). Evaluating the influence of these parameters on
the system’s dynamics will provide a better understanding of the epidemic’s stability
under different control strategies. This study would help identify critical thresholds
where vaccination and treatment are most effective, offering valuable insights for
decision-making in real epidemiological contexts. Besides, future research could
focus on refining the model by incorporating real-world data, improving parameter
estimation, and considering additional constraints to better reflect practical limita-
tions in vaccination and treatment deployment. Additionally, exploring the impact of
control strategies under different epidemiological conditions could further enhance
the applicability of the findings to various public health contexts, see e.g [8].
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