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A generalization of the Zariouh’s property (gaz)
through local spectral theory

J. Macı́as*, A. Jativa, J. Barreto and E. Aponte

Abstract In this work, we present for the first time an in-depth study of the relation-
ship between the upper semi-B-Fredholm spectrum and the left Drazin spectrum.
This connection leads to the definition of a new spectral property, denoted as (ggaz),
which generalizes the previously studied property (gaz). Through the framework of
local spectral theory, we derive several characterizations of operators that satisfy
the (ggaz) property. Moreover, we demonstrate that the set of operators fulfilling
this property constitutes a Banach space, highlighting the structural significance of
(ggaz) in operator theory.
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Departamento de Matemática, Facultad de Ciencias Naturales y Matemáticas, ESPOL, Escuela
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1 Introduction

The theory of Fredholm-type operators began around 1903 in a paper published
by Erik Ivar Fredholm [2], in order to solve systems of differential or integro-
differential equations. Spectral Theory arises when the system and its solution are
defined in an infinite-dimensional space, where traditional methods are no longer
applicable. Thus, the concept of an operator’s spectrum T is introduced, and it is
defined as σ(T ) := {λ ∈C : λ I−T is not invertible}. Here, λ I−T represents the
operator modeling the system. Among the classical foundations of Spectral Theory
are theorems of Browder-type and Weyl’s theorems [1, Chapters 5, 6].

In operator theory, the classification of operators based on their spectral proper-
ties plays a central role in understanding the structure of the spectrum. Operators
such as normal, Weyl-type, and Browder-type are classified to describe distinct re-
gions of the spectrum, with various spectral properties defined to capture the behav-
ior of these operators within their respective spectral subsets [1], [21]. The system-
atic development of these spectral properties has not only advanced the theoretical
landscape of operator theory but has also fostered applications in areas such as data
science [7] and artificial intelligence [6].

However, the Fredholm-type spectrum has received comparatively little atten-
tion. The majority of spectral properties introduced in [1] and [21] address spectra
that define specific operator classes but do not fully engage with Fredholm-type op-
erators. Only recently, in [15], it has any substantial analysis been conducted on
Fredholm-type spectra, indicating a gap in the literature that warrants further explo-
ration.

The study of Fredholm-type spectra is still in its early stages and remains inno-
vative, particularly within the context of infinite-dimensional Banach spaces. The
complexities inherent in such spaces necessitate new theoretical frameworks and
methods, which presents an exciting frontier for research.

In this paper, we explore the relationship between the upper Berkani-Fredholm
spectrum and the left Drazin spectrum, introducing a new spectral property denoted
as (ggaz), which extends the previously studied (gaz) property [5]. The (ggaz) prop-
erty offers a deeper insight into the spectral behavior of operators, and we provide
several characterizations of operators that satisfy this property, as detailed in Section
3.

The results presented here have broader implications for future research. In par-
ticular, the (ggaz) property can be extended to study the tensor product of operators
that satisfy this property, potentially linking to the results found in [8, 9, 16, 20, 19].
Moreover, the analysis of (ggaz) remains an open problem in areas such as per-
turbations and conjugate operators, as discussed in [4], paving the way for further
advancements in local spectral theory.
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2 Definitions and preliminary results

Let L(X) be an algebra of bounded linear operators defined on an infinite-dimensional
complex Banach space X . If T ∈ L(X), then we denote by α(T ) the dimension of the
kernel kerT , and by β (T ) the dimension of the range R(T ) := T (X), respectively.

Using α(T ) and β (T ), we define Fredholm-type operators. The class of upper
semi-Fredholm operators is defined as

Φ+(X) := {T ∈ L(X) : α(T )< ∞, T (X) is closed}.

Similarly, the class of lower semi-Fredholm operators is defined by

Φ−(X) := {T ∈ L(X) : β (T )< ∞}.

Lower semi-Fredholm operators always have closed range because β (T ) < ∞

implies that the range of T is closed.
The class of Fredholm operators is defined as Φ(X) := Φ+(X)∩Φ−(X), while

the class of semi-Fredholm operators is defined as Φ±(X) := Φ+(X)∪Φ−(X).
If T ∈Φ±(X), then the difference between α(T ) and β (T ) is defined as a number

that helps to express other classes of operators. This number is the index of T , and
it is defined by ind(T ) := α(T )−β (T ).

Using ind(T ), the class of Weyl operators is defined as

W (X) := {T ∈ Φ(X) : ind(T ) = 0},

the class of upper semi-Weyl operators is defined as

W+(X) := {T ∈ Φ+(X) : ind(T )≤ 0},

and the class of lower semi-Weyl operators is defined as

W−(X) := {T ∈ Φ−(X) : ind(T )≥ 0}.

On the other hand, we consider two additional numbers. Let p := p(T ) be the
ascent of an operator T ∈ L(X), defined as the smallest non-negative integer p such
that kerT p = kerT p+1. If no such integer exists, we set p(T ) = ∞. Similarly, let
q := q(T ) be the descent of T , defined as the smallest non-negative integer q such
that T q(X) = T q+1(X). If no such integer exists, we set q(T ) = ∞.

It is well known that if both p(T ) and q(T ) are finite, then p(T ) = q(T ); see [1,
Chapter 1]. Moreover, 0 < p(λ I −T ) = q(λ I −T )< ∞ if and only if λ is a pole of
the resolvent; see [18, Proposition 50.2].

Using p(T ) and q(T ), another class of operators is defined: the class of all Brow-
der operators, defined as the set

B(X) := {T ∈ Φ(X) : p(T ) = q(T )< ∞},

the class of all upper semi-Browder operators is defined as
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B+(X) := {T ∈ Φ+(X) : p(T )< ∞},

and the class of all lower semi-Browder operators is defined as

B−(X) := {T ∈ Φ−(X) : q(T )< ∞}.

Note that B(X)⊆W (X), B+(X)⊆W+(X), and B−(X)⊆W−(X).

In the following, we denote by σ(T ) the spectrum of T , defined as

σ(T ) := {λ ∈ C : λ I −T is not invertible},

and by σa(T ) the approximate point spectrum, defined as

σa(T ) := {λ ∈ C : λ I −T is not bounded below}.

An operator is said to be bounded below if it is injective and has closed range. The
surjective spectrum of T is defined as

σs(T ) := {λ ∈ C : λ I −T is onto}.

In similar manner, other operator spectra are defined, namely:

• Upper semi-Fredholm spectrum: σu f (T ) := {λ ∈ C : λ I −T /∈ Φ+(X)}.
• Upper semi B-Fredholm spectrum: σub f (T ).
• Lower semi B-Fredholm spectrum: σlb f (T ).
• Approximate point spectrum: σa(T ).
• Weyl spectrum: σw(T ) := {λ ∈ C : λ I −T /∈W (X)}.
• Upper semi-Weyl spectrum: σuw(T ) := {λ ∈ C : λ I −T /∈W+(X)}.
• Upper semi B-Weyl spectrum: σubw(T ) := {λ ∈C : λ I−T is not upper semi B-Weyl}.
• Upper semi-Browder spectrum: σub(T ) := {λ ∈ C : λ I −T /∈ B+(X)}.

Semi-Fredholm operators have been generalized by Berkani ([12], [14], and [13])
in the following way: for every T ∈ L(X) and a nonnegative integer n, let us denote
by T[n] the restriction of T to T n(X), viewed as a map from the space T n(X) into
itself (we set T[0] = T ). An operator T ∈ L(X) is said to be semi-B-Fredholm (resp. B-
Fredholm, upper semi-B-Fredholm, lower semi-B-Fredholm) if for some integer n ≥
0, the range T n(X) is closed and T[n] is a semi-Fredholm operator (resp. Fredholm,
upper semi-Fredholm, lower semi-Fredholm). In this case, T[m] is a semi-Fredholm
operator for all m ≥ n ([14]) with the same index as T[n]. This allows us to define the
index of a semi-B-Fredholm operator as indT = indT[n].

A bounded operator T ∈ L(X) is said to be B-Weyl (respectively, upper semi-B-
Fredholm, upper semi-B-Weyl, lower semi-B-Weyl) if for some integer n ≥ 0, the
range T n(X) is closed and T[n] is Weyl (respectively, upper semi-Fredholm, upper
semi-Weyl, lower semi-Weyl).

The B-Weyl spectrum is defined by
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σbw(T ) := {λ ∈ C : λ I −T is not B-Weyl},

and the upper semi-B-Weyl spectrum of T is defined by

σubw(T ) := {λ ∈ C : λ I −T is not upper semi-B-Weyl}.

Analogously, the upper semi-B-Fredholm spectrum of T is defined by

σubf(T ) := {λ ∈ C : λ I −T is not upper semi-B-Fredholm}.

The numbers p(T ) and q(T ) allow the definition of a class of operators of Drazin
type, which are considered in several studies within the theory of Fredholm op-
erators. Thus, T ∈ L(X) is said to be Drazin invertible (with a finite index) if
p(T ) = q(T ) < ∞. It is said to be left Drazin invertible if p := p(T ) < ∞ and
T p+1(X) is closed. Furthermore, T ∈ L(X) is said to be right Drazin invertible if
q := q(T )< ∞ and T q(X) is closed.

Note that T ∈ L(X) is Drazin invertible if and only if T is both left Drazin invert-
ible and right Drazin invertible.

If λ I −T is left Drazin invertible and λ ∈ σa(T ), then λ is said to be a left pole.
A left pole λ is said to have finite rank if α(λ I −T )< ∞. If λ I −T is right Drazin
invertible and λ ∈ σs(T ), then λ is said to be a right pole. A right pole λ is said to
have finite rank if β (λ I −T )< ∞.

The Drazin spectrum is defined as

σd(T ) := {λ ∈ C : λ I −T is not Drazin invertible},

the left Drazin spectrum is defined as

σld(T ) := {λ ∈ C : λ I −T is not left Drazin invertible},

while the right Drazin spectrum is defined as

σrd(T ) := {λ ∈ C : λ I −T is not right Drazin invertible}.

Evidently, σd(T ) = σld(T )∪σrd(T ), σubw(T )⊆ σld(T ), and σbw(T )⊆ σd(T ).

Denote by Π(T ) and Πa(T ) the set of all poles and the set of left poles of T ,
respectively. Clearly, Π(T ) = σ(T )\σd(T ) and Πa(T ) = σa(T )\σld(T ). Note that
Πa(T )⊆ isoσa(T ), where isoσa(T ) denotes the set of isolated points of σa(T ).

In fact, if λ0 ∈ Πa(T ), then λ I −T is left Drazin invertible and hence p(λ0I −
T ) < ∞. Since λ I − T has a uniform topological descent (see [17] for definition
and details), it follows from [17, Corollary 4.8] that λ I − T is bounded below in
a punctured disc centered at λ0. Define pa

00(T ) := σa(T ) \σub(T ) and p00(T ) :=
σ(T )\σb(T ); obviously, pa

00(T )⊆ Πa(T ) and p00(T )⊆ Π(T ) for every T ∈ L(X).
The theory of Fredholm-type operators is highly correlated with a property called

SVEP. An operator T ∈ L(X) is said to have the single-valued extension property at
λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc U of λ0, the only analytic
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function f : U → X that verifies the equation (λ I − T ) f (λ ) = 0 for all λ ∈ U is
the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has SVEP at
every point λ ∈ C. An operator T ∈ L(X) has SVEP at every point of the resolvent
ρ(T ) := C \ σ(T ), and both T and T ∗ have SVEP at the isolated points of the
spectrum, where T ∗ denotes the dual operator, i.e., T ∗(ϕ) = ϕ ◦T for every ϕ in the
dual space X∗ = L(X ,C).

Remark 2.1 Note that

p(λ I −T )< ∞ ⇐⇒ T has SVEP at λ .

Moreover, from the definition of localized SVEP, we easily obtain that if

σa(T ) does not cluster at λ ,

then T has SVEP at λ . These implications are equivalent when λ I−T is an operator
of Fredholm type. See [1, Chapter 2].

Note that T has SVEP at every isolated point of the spectrum, also in ρ(T ) =
C\σ(T ).

Last but not least, we consider for T ∈ L(X) the set:

Ξ(T ) = {λ ∈ C : T does not possess the SVEP at λ}.

Note that Ξ(T ) is contained in the interior of the spectrum; according to the
classical identity theorem for analytic functions, it follows that Ξ(T ) is open.

3 The generalized property (ggaz)

This section introduces a property that extends the scope of the existing property
(gaz). This new property puts forward the idea that σub f (T ) = σld(T ), which has
not been considered so far. This idea is discussed in detail throughout the article,
generating an analysis and relevance of the property.

For T ∈ L(X), we define:

∆
g
a (T ) :=σa(T )\σubf(T ), ∆

g
1 (T ) :=σ(T )\σubw(T ), and ∆

g(T ) :=σ(T )\σubf(T ).

Since σubf(T )⊆ σubw(T )⊆ σld(T ), we have:

Πa(T )⊆ ∆
g
a (T )⊆ ∆

g
1 (T )⊆ ∆

g(T ).

Recall that T ∈ L(X) is said to verify property (gaz) if ∆
g
1 (T ) = Πa(T ). Now, we

define a generalization of the property (gaz).

Definition 3.1 Let T ∈ L(X). T is said to verify generalized property (ggaz) if
∆ g(T ) = Πa(T ).
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For T ∈ L(X), the property (ggaz) implies the property (gaz), but not vice versa.
These properties are equivalent if σubw(T ) = σubf(T ), or equivalently if σuw(T ) =
σuf(T ). We establish this as a theorem.

Theorem 3.2 T ∈ L(X) verifies property (ggaz) if and only if T verifies property
(gaz) and σuw(T ) = σuf(T ).

The above theorem and the following example show that property (ggaz) gener-
alizes property (gaz).

Example 3.3 Let X = ℓ2(N) and let T be the unilateral left shift defined as:

T (x1,x2,x3, . . .) = (x2,x3, . . .), for all (xn) ∈ ℓ2(N).

It is known that the upper semi-Weyl spectrum is the unit disc D(0,1). Also, by
[15, Example 2.3], its upper semi-Fredholm spectrum is the unit circle Γ (0,1). By
Theorem 3.2, it follows that T does not verify property (ggaz). However, by [5,
Example 3.8], it turns out that T verifies property (gaz).

The following is an example of the application of Theorem 3.8.

Example 3.4 An algebraic operator has a finite spectrum, so its dual has SVEP.
Hence, an algebraic operator verifies property (gaz). Additionally, the accumula-
tion points of the approximate point spectrum are empty, which is obvious, implying
that σuw(T ) = σu f (T ).

In general, let T ∈ L(X) and λ /∈ σu f (T )∪Acc(σa(T )). Then λ ∈ σu f (T )c ∩
iso(σa(T )); hence, λ I−T is an upper semi-Fredholm operator and has SVEP at λ ,
giving that p(λ I −T )<+∞, and thus λ /∈ σuw(T ). We deduce that

σuw(T )⊆ σu f (T )∪Acc(σa(T )).

Therefore, if Acc(σa(T )) = /0, then σuw(T ) = σu f (T ).
By Theorem 3.2, it turns out that each algebraic operator verifies property

(ggaz).

Corollary 3.5 Every operator T ∈ L(X) with a finite spectrum verifies property
(ggaz).

The SVEP is insufficient for operators to verify the property (ggaz), as illustrated
in the example below.

Example 3.6 Let R denote the classical right shift in the Hilbert space ℓ2(N), de-
fined as

R(x1,x2, . . .) := (0,x1,x2, . . .) for all x = (xk)k∈N ∈ ℓ2(N).

It is known that R has SVEP. However, the property (ggaz) fails for R, since
σ(R) = D(0,1), where D(0,1) is the closed disc in C, and σa(R) = ∂D(0,1).
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Consider the sets

∆+(T ) := σ(T )\σuw(T ), δu f (T ) = σa(T )\σu f (T ).

Recently, studies have been done linking these sets with pa
00(T ) in [11] and [10],

throughout the properties (az) and (bz), respectively.

Definition 3.7 Let T ∈ L(X):
1) If ∆+(T ) = pa

00(T ), we say that T verifies (az).

2) If δu f (T ) = pa
00(T ), we say that T verifies (bz).

The properties (az) and (bz) together become the property (ggaz). This is demon-
strated by the following result.

Theorem 3.8 Let T ∈ L(X). Then T verifies (ggaz) if and only if T verifies (az) and
(bz).

Proof. ⇒) Let T verify the property (ggaz). Then, by Theorem 3.2, T veri-
fies the property (gaz) and σu f (T ) = σuw(T ). Since T verifies (az), we have
∆+(T ) = pa

00(T ) (see [5, Theorem 3.5]), which implies that σub(T ) = σuw(T ).
Hence, σub(T ) = σu f (T ), giving the property (bz) for T . Moreover, since (gaz)
is equivalent to (az) (see [5]), we obtain the result.

⇐) Conversely, suppose that T verifies properties (az) and (bz). Then T verifies
(gaz) since (az) is equivalent to (gaz). It is known that σu f (T )⊆ σuw(T )⊆ σub(T ).
Since T verifies (bz), we have σu f (T ) = σub(T ) (see [?, Theorem 3.5]), implying
that σu f (T ) = σuw(T ). Thus, by Theorem 3.2, the result follows.

Since L(X) is a Banach algebra, Theorem 3.8 allows us to establish that the set
of operators that verify the property (ggaz) is a Banach space, which is achieved by
proving that it is closed in L(X), as shown below.

Theorem 3.9 Let T ∈ L(X) and Tn ∈ L(X) for each n ≥ 1, such that lim∥T −Tn∥=
0 when n → ∞. If for each n ≥ 1, Tn verifies the property (ggaz), then T verifies the
property (ggaz).

Proof. By Theorem 3.8, we have that each Tn verifies properties (az) and (bz). Thus,
by [11, Theorem 9], T verifies the property (az), and by [10, Theorem 3.11], T
verifies the property (bz). Therefore, by Theorem 3.8, we conclude that T verifies
the property (ggaz).

Corollary 3.10 The set of operators satisfying the property (ggaz) is a Banach
space.

Example 3.11 Let X = ℓ2(N), and let (an) ∈ C be a sequence of non-zero complex
numbers converging to 0.

Define the sequence of operators as Tn(x) = (a1x1, . . . ,anxn,0,0, . . .), for each
x = (xn) ∈ X. Note that lim∥T −Tn∥= 0 when n → ∞, where
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T (x) = (a1x1,a2x2, . . . ,anxn, . . .) ∀x = (xn) ∈ X .

On the other hand, for all n ∈ N, it turns out that σ(Tn) = {a1, . . . ,an}. Thus,
by Corollary 3.5, we have that for all positive integers n, Tn verifies the property
(ggaz). Therefore, by Theorem 3.9, the limit T verifies the property (ggaz).

In the following, we characterize the operators that verify property (ggaz). In
particular, if the approximate point spectrum differs from the spectrum, the operator
does not verify property (ggaz).

Theorem 3.12 T ∈ L(X) verifies property (ggaz) if and only if σa(T ) = σ(T ) and
T verifies property (bz).

Proof. (⇒) Note that T verifies property (gaz), so σ(T ) = σa(T ). Also, by The-
orem 3.2, it follows that σuw(T ) = σuf(T ). Since the properties (gaz) and (az) are
equivalent, we have σuw(T ) = σub(T ). Therefore, we obtain that σuf(T ) = σub(T ),
i.e., T verifies property (bz).

(⇐) Note that σuf(T )⊆σuw(T )⊆σub(T ). Thus, since T verifies property (bz), it
follows that σuf(T ) = σuw(T ) = σub(T ). Also, by hypothesis, σ(T ) = σa(T ), which
implies that T verifies property (az), or equivalently, property (gaz). Therefore, by
Theorem 3.2, we conclude that T verifies property (ggaz).

We denote by H (σ(T )) the set of all analytic functions defined in an open neigh-
borhood of the spectrum σ(T ). For f ∈H (σ(T )), we consider f (T ) as in the clas-
sical Riesz functional calculus. The spectral mapping theorem is valid for σ(T ) and
σa(T ), i.e., σ( f (T )) = f (σ(T )) and σa( f (T )) = f (σa(T )), where f ∈ H (σ(T )).
Additionally, by [10, Theorem 3.7], it turns out that f (T ) verifies property (bz) if
T verifies property (bz). Therefore, we obtain the following result from Theorem
3.12.

Corollary 3.13 Let T ∈ L(X) and f ∈H (σ(T )). If T verifies property (ggaz), then
f (T ) verifies property (ggaz).

The following characterization for the operators that verify property (ggaz)
shows the spectral structure they must have.

Theorem 3.14 Let T ∈ L(X). Then the following statements are equivalent:

(i) T has property (ggaz);

(ii) ∆ g(T )⊆ isoσa(T );

(iii) ∆ g(T )⊆ ∂σa(T ), where ∂σa(T ) is the boundary of σa(T );

(iv) int∆ g(T ) = /0;

(v) σ(T ) = σubf(T )∪∂σa(T );

(vi) σ(T ) = σubf(T )∪ isoσa(T ).

(vii) σubf(T ) = σubw(T ) = σbw(T ) = σld(T ) = σd(T ).
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Proof. (i) ⇒ (ii) This is because Πa(T )⊆ isoσa(T ).
(ii) ⇒ (iii) Clear, since isoσa(T )⊆ ∂σa(T ).
(iii) ⇒ (iv) Clear.
(iv) ⇒ (i) Let λ0 ∈ ∆ g(T ). If T does not have SVEP for some λ0 ∈ ∆ g(T ), then

T does not have SVEP for all λ ∈ D(λ0,ε0) for some ε0 > 0, because Ξ(T ) is an
open set.

If λ0I − T is upper semi-B-Fredholm, then by [1, Theorem 1.117] there exists
an open disc D(0,ε) centered at 0 such that λ I −T is upper semi-Fredholm for all
λ ∈ D(0,ε) \ {0}. Since each upper semi-Fredholm operator is an upper semi-B-
Fredholm operator, we deduce that the set of upper semi-B-Fredholm operators is
an open set. So, we consider an open disk D(λ0,ε1) for λ0I −T .

Now, if ε2 := min{ε0,ε1}, then for every λ ∈ D(λ0,ε2), λ I − T does not have
SVEP (thereby λ ∈ σ(T )) and is an upper semi-B-Fredholm operator. Conse-
quently, D(λ0,ε2)⊆ ∆ g(T ), but this is impossible.

Therefore, T has SVEP at λ0, and by Remark 2.1, it turns out that p(λ0I −T )<
∞. In view of [1, Corollary 1.83] and [1, Theorem 1.81], we deduce that λ ∈ Πa(T ).

Therefore, ∆ g(T )⊆ Πa(T ) and T has property (ggaz).
(iv) ⇔ (v) Note that (v) ⇒ (iv), also (iv) ⇒ (iii), and that (iii) ⇒ (v).
(iv) ⇔ (vi) Note that (vi) ⇒ (iv), also (iv) ⇒ (ii), and that (ii) ⇒ (vi).
(i) ⇔ (vii) Directly. Note that T verifies property (gaz), whereby σ(T ) = σa(T ).

Since T verifies property (ggaz), we obtain that σubf(T ) = σld(T ). The result is
obtained by [5, Theorem 3.3].

Conversely, since σld(T ) = σd(T ), it follows that σ(T ) = σa(T ). Given the hy-
pothesis, we have that T verifies property (ggaz).

Finally, in terms of connection, we establish a sufficient condition for an operator
to verify the property (ggaz).

Theorem 3.15 Let T ∈ L(X). If ρu f (T ) and ρuw(T ) are connected, then T verifies
the property (ggaz).

Proof. T verifies the SVEP for all λ ∈ ρ(T ). Now, if Ω is the unique component
of ρu f (T ), then by [3, Theorem 3.36], T has the SVEP for all λ ∈ Ω . We consider
λ /∈ σu f (T ); in this way, λ ∈ ρu f (T ), hence, λ ∈ Ω . Consequently, T has the SVEP
at λ . Since λ /∈ σu f (T ), it follows that p(λ I−T )<+∞, implying that λ /∈ σuw(T ).
Thus, we deduce that σu f (T ) = σuw(T ). On the other hand, by [5, Theorem 3.12],
T verifies property (gaz). Therefore, T verifies property (ggaz).

4 Conclusions

The property (ggaz) collects operators that are upper semi-B-Fredholm, are not in-
jective, and have finite ascent. If an operator T ∈ L(X) does not verify the property
(ggaz), then:

1. σu f (T ) ̸= σuw(T ), or T does not verify the property (gaz), see Theorem 3.2.
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2. T does not verify the property (az), or does not verify the property (bz), see
Theorem 3.8.

3. int∆ g(T ) ̸= /0, see Theorem 3.14.
4. ρu f (T ), or ρuw(T ) are not connected.

On the other hand, the property (ggaz) is satisfied under the Riesz calculus, see
Corollary 3.13. Also, the set of operators verifying the property (ggaz) forms a
closed set in L(X); therefore, it is a Banach space in L(X), see Theorem 3.9.
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