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Abstract. An inequality of Gronwall type including singularities is derived. Its application to solve

uniqueness problems is showed and a connection between this type of inequalities and the Mittag-Leffler
functions is also proved.

1. Introduction

Let t ≥ 0 and x ∈ Rd. We consider the following non-linear operator

M(v)(t, x) :=

∫
Rd

Z(t, x− y)u0(y)dy +

∫ t

0

∫
Rd

Y (t− s, x− y)|v(s, y)|γ−1v(s, y)dyds

where γ > 1, u0 ∈ Lp(Rd) ∩ L1(Rd) is a given data with p > 1. The function v belongs to a Banach
space E of continuous functions on the interval [0, T ]. The space Lp(Rd) ∩ L1(Rd) is equipped with the
usual norm ∥·∥1 + ∥·∥p. The pair (Z, Y ) are kernels of convolution. By using the standard notation f ⋆ g
for the convolution w.r.t. the spatial variable, we can write

M(v)(t) = Z(t) ⋆ u0 +

∫ t

0

Y (t− s) ⋆ |v(s, y)|γ−1v(s, y)ds. (1)

Depending on E, certain singularities may appear in estimates made on fixed points of M. We recall
that a fixed point of a mapping Φ, is an element w of its domain such that Φ(w) = w. Some non-linear
Cauchy problems can give rise to this type of operators, which motivates the study of the existence and
uniqueness of their fixed points. The aim of this work is to obtain an inequality of Gronwall type and
then apply it to obtain a result of fixed point uniqueness.

This paper is organized as follows. Section 2 recalls the classical Gronwall inequalities and compiles
some properties of Mittag-Leffler functions. In Section 3 the main result is given in Theorem 3.1 together
with Corollary 3.1, which involves standard Mittag-Leffler functions. The last section is devoted to apply
the main result.

2. Preliminaries

In what follows we use the notation f ≲ g in D, which means that there exists a constant C > 0 such
that f ≤ Cg in the set D. The constant may change line by line.

We recall the classical Gronwall inequality (Gronwall’s lemma) and some applications (see, e.g. [3,
Proposition 9.1.4]). Let u : R+ → R+ be a function such that satisfies the inequality

u(t) ≤ a+

∫ t

0

c(s)u(s)ds

for all t ≥ 0, with the constant a and c an integrable function. Then

u(t) ≤ ae
∫ t
0
c(s)ds.

It is straightforward to see that u ≡ 0 whenever a = 0. Therefore, we can conclude uniqueness by using
this inequality if we suppose two functions u1, u2 such that

|u1(t)− u2(t)| ≤
∫ t

0

c(s)|u1(s)− u2(s)|ds.
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Nevertheless, some inequalities may be more complicated in the sense that the function c includes
singularities and a is not necessarily constant. For instance, the inequality

u(t) ≤ g(t) +

∫ t

0

(t− s)α−1u(s)ds

with α ∈ (0, 1), is studied in [9] and some results of Gronwall type are proved.
On the other hand, it is well known some analytical properties of the Mittag-Leffler functions (see

e.g., [4] and [8]). These functions are so named from the Swedish mathematician Gösta Mittag-Leffler
(1846-1927) who introduced them at the beginning of the century XX (1903, 1904, 1905).

The Mittag-Leffler function of two real parameters α, ϑ > 0 ([1, Chapter 18]) is given by

Eα,ϑ(z) :=

∞∑
k=0

zk

Γ(kα+ ϑ)
, z ∈ C.

In the literature we can find a generalization of this function with three complex parameters, as well as
its relation with the Mellin-Barnes integral and the H-Function (also called Fox’s H-function). See e.g.,
[5, Definition 1.4]. It is also known that Eα,ϑ, α, ϑ > 0, is an entire function.

Whenever ϑ = 1,

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, z ∈ C,

is the standard Mittag-Leffler function and Eα(−x) is completely monotonic for x ≥ 0 if 0 < α < 1. The
latter is thanks to the work of the American mathematician Harry Pollard (1919-1985).

In particular, the standard Mittag-Leffler function Eα has become a useful tool to obtain Gronwall
type inequalities with singularities, which are crucial for analysing uniqueness of solutions.

Another fundamental fact on these functions is because they can be defined for any operator that
generates a strongly continuous semigroup in a Banach space, using Zolotarev’s formula (or Zolotarev-
Pollard formula), in terms of Green functions or strongly continuous semigroups; see [3, Section 8.1].
This representation plays a fundamental role for obtaining estimates of the Green functions in evolution
equations with fractional time derivative (see, e.g. [2], [6], [7]).

3. Gronwall-type inequality

Theorem 3.1. Let α ∈ (0, 1) and ϑ ≥ 0 such that α − ϑ > 0. Let g(t) a non-negative function locally
bounded on t ∈ [0, T ) with some T > 0. Suppose that f(t) is non-negative and locally bounded on [0, T )
such that

f(t) ≤ g(t) + C

∫ t

0

(t− s)α−1s−ϑf(s)ds

for all t ∈ [0, T ), with some positive constant C. Then

f(t) ≤ g(t) +

∫ t

0

[ ∞∑
n=1

an(t− s)nα−(n−1)ϑ−1s−ϑg(s)

]
ds, 0 ≤ t < T,

where

an = Cn
n−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)
.

Proof. The case ϑ = 0 is straightforward from [9, Theorem 1]. For the case ϑ > 0 we require some
adjustments in its proof. First, we define the operator B given by

Bϕ(t) := C

∫ t

0

(t− s)α−1s−ϑϕ(s)ds, t ≥ 0,

for locally bounded functions ϕ. By construction, the operator B is linear and Bϕ1 ≤ Bϕ2 whenever
ϕ1 ≤ ϕ2. Therefore, we have that

f(t) ≤
n−1∑
k=0

Bkg(t) +Bnf(t), n ≥ 1. (2)

Next, we prove that

Bnf(t) ≤ Cn
n−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

∫ t

0

(t− s)nα−(n−1)ϑ−1s−ϑf(s)ds (3)
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is true for all n ∈ N by induction. The case n = 1 follows straightforwardly from the definition of B.
Now, we suppose that (3) is true for N ∈ N and applying B we obtain

B
(
BNf

)
(t)

= C

∫ t

0

(t− s)α−1s−ϑBNf(s)ds

≤ CN+1
N−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

∫ t

0

(t− s)α−1s−ϑ

[∫ s

0

(s− τ)Nα−(N−1)ϑ−1τ−ϑf(τ)dτ

]
ds

= CN+1
N−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

∫ t

0

[∫ t

τ

(t− s)α−1s−ϑ(s− τ)Nα−(N−1)ϑ−1ds

]
τ−ϑf(τ)dτ,

where the last line comes from the Fubini’s theorem. Besides, the integral in the square brackets can be
estimated with the substitution s = τ + z(t− τ) as follows.

∫ t

τ

(t− s)α−1s−ϑ(s− τ)Nα−(N−1)ϑ−1ds

=

∫ 1

0

((t− τ)(1− z))α−1(τ + z(t− τ))−ϑ(z(t− τ))Nα−(N−1)ϑ−1(t− τ)dz

≤
∫ 1

0

((t− τ)(1− z))α−1(z(t− τ))−ϑ(z(t− τ))Nα−(N−1)ϑ−1(t− τ)dz

= (t− τ)(N+1)α−Nϑ−1

∫ 1

0

(1− z)α−1zN(α−ϑ)−1dz

= (t− τ)(N+1)α−Nϑ−1 Γ(α)Γ(N(α− ϑ))

Γ((N + 1)α−Nϑ)
.

Consequently,

B
(
BNf

)
(t) ≤ CN+1

N∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

∫ t

0

(t− τ)(N+1)α−Nϑ−1τ−ϑf(τ)dτ

which proves the inductive step in (3).

Finally, since Γ((k+1)(α−ϑ))
Γ((k+1)α−kϑ) ≤ 1 for k large enough, we have that

lim
n→∞

Bnf(t) = 0

and the expression (2) can be written as

f(t) ≤
∞∑

n=0

Bng(t).

The proof is complete. □

Under hypothesis of the previous theorem, if ϑ = 0 and M is an upper bound of g, we see that

f(t) ≤ M +M

∫ t

0

[ ∞∑
n=1

an(t− s)nα−1

]
ds, 0 ≤ t < T,

where

an =
CnΓ(α)n

Γ(nα)
, n ≥ 1.
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It follows that

f(t) ≤ M +M

∞∑
n=1

an

[∫ t

0

(t− s)nα−1ds

]

= M +M

∞∑
n=1

an
tnα

nα

= M +M

∞∑
n=1

(CΓ(α)tα)
n

Γ(nα+ 1)

= M

∞∑
n=0

(CΓ(α)tα)
n

Γ(nα+ 1)
.

Therefore, we have the following estimate in terms of the standard Mittag-Leffler function.

Corollary 3.1. Under hypothesis of Theorem 3.1, if ϑ = 0 and M is an upper bound of g, it holds

f(t) ≤ MEα (CΓ(α)tα) .

In particular, g ≡ 0 implies that f ≡ 0.

4. An application for uniqueness of fixed points

In this section we use previous inequalities for showing uniqueness of fixed points of some non-linear
operators in Banach spaces. For instance, considering 0 < α < 1 and 0 < β < 2, we want to conclude
that the non-linear operator (1),

M(v)(t) = Z(t) ⋆ u0 +

∫ t

0

Y (t− s) ⋆ |v(s, y)|γ−1v(s, y)ds,

can only have at most one fixed point (solution) in the Banach space

E := C([0, T ];Lp(Rd) ∩ L1(Rd)) ∩ C((0, T ];L∞(Rd)),

with the norm

∥v∥E := sup
t∈[0,T ]

(
∥v(t, ·)∥p + ∥v(t, ·)∥1

)
+ sup

t∈(0,T ]

t
αd
βp ∥v(t, ·)∥∞ ,

whenever d(γ−1)
βp < 1. In this case, we suppose that there are two fixed points, u1 and u2, of M. Using

the property

| |a|ca− |b|cb | ≲ | a− b |(|a|c + |b|c) ≲ | a− b |( |a|+ |b| )c, a, b ∈ R, c > 0,

together with Young’s inequality for convolutions, it follows that

∥u1(t)− u2(t)∥1 ≤
∫ t

0

∥Y (t− s, ·)∥1∥|u1(s, ·)|γ−1u1(s, ·)− |u2(s, ·)|γ−1u2(s, ·)∥1ds

≲ (∥u1∥E + ∥u2∥E)γ−1
∫ t

0

(t− s)α−1s−
αd(γ−1)

βp ∥u1(s)− u2(s)∥1ds.

By applying Theorem 3.1, with g = 0 and ϑ = αd(γ−1)
βp , we see that u1 = u2.

Further details on M are available in [6, Section 3].

Availability of data and material

Not applicable. No datasets were generated or analysed during the current work.

Code availability

Not applicable.
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