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Geometrical interpretation of the circle equation
in the complex plane using the equivalent
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Abstract If tangent circles are drawn to a circle with center on the x-axis, the roots
of the tangent circles that do not touch the x-axis and the root of the tangent cir-
cle that only touch the x-axis at one point are located on a circle in the complex
plane. A function of a circle in the complex plane is obtained. The complex func-
tion represents the complex roots (discriminant less than zero) and the unique real
solution (discriminant is equal to zero) of the first (or second) tangent circles to the
real-valued function that represents the superior (or inferior) part of a circle with
center on the x-axis.

Keywords complex function, real-valued function, tangent circle.

Resumen Si a un circulo con centro en el eje x se le trazan circulos tangentes, las
raices de los circulos tangentes que no tocan el eje x y la raiz del circulo tangente
que solo toca el eje x en un punto se ubican sobre un circulo en el plano complejo.
Una funcién de un circulo en el plano complejo es obtenida. La funcién compleja
representa las raices complejas (discriminante menor que cero) y la tnica solucién
real (discriminante igual a cero) de los primeros (o segundos) circulos tangentes a la
funcién de valor real que representa la parte superior (o inferior) de un circulo con
centro en el eje x.

Palabras Claves circulo tangente, funcién compleja, funcién de valor real.

1 Introduction

An application of the tangent conic sections to the graph of a function is pre-
sented (Gémez-Villarraga, 2021). The straight line is the simplest tangent curve to
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the graph of a function at a point P. Tangent conic sections to the graph of a func-
tion can also be determined. This can be seen as curves tangent to other curve. The
first (or second) tangent circles to the graph of a function are determined using the
equations for the first (or second) tangent ellipses where the semi-major axis a and
the semi-minor axis b are equal to the radius r (Gémez-Villarraga, 2021); (Larson
& Edwards, 2008); (Leithold, 1998); (Stewart, 2015); (Strang, 2010); (Tan, 2010);
(Thomas, Weir, & Hass, 2013).

The complex roots (discriminant less than zero) and the unique real solution
(discriminant is equal to zero) of the first (or second) tangent circles to the real-
valued function that represents the superior (or inferior) part of a circle with center
on the x-axis are on a circle in the complex plane. In other words, if tangent circles
are drawn to a circle with center on the x-axis, the roots of the tangent circles that
do not touch the x-axis and the root of the tangent circle that only touch the x-axis
at one point are located on a circle in the complex plane (Howie, 2003); (Newcomb,
1885); (Swokowski, 1979); (Swokowski & Cole, 2012); (Zill & Shanahan, 2009).

A geometrical connection between a circle equation in the complex plane and the
equivalent real-valued function is found.

2 Geometrical interpretation of the circle equation in the
complex plane using the equivalent real-valued function

The real-valued function of a circle with center at (4, k) and radius » > 0 is given
by:
(x—hP+@y—k’=r (1

(Leithold, 1998, p. 1173)
Solving for y in equation 1

y=+rr—(x—h?*+k whereh—r<x<h+r 2)

Two functions are obtained from the equation 2:

y=f(x)= \r2—(x—h2+k whereh—-r<x<h+r 3)
And:
y=f(x)=—-+VrP—(x-h?+k whereh—-r<x<h+r 4)

The functions 3 and 4 are plotted in Figure 1:
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f@)=vri-(x-hP+k

‘‘‘‘‘‘‘

Figure 1: Graph of the function f(x) = +r2—(x—h)? + k and f(x) =
— /2 = (x — h)? + k (Swokowski, 1979; Swokowski & Cole, 2012)

Source: Own creation

First tangent circles of radius  (the radius of the tangent circles is the same as

the original circle) to the function f(x) = r2—(x—h)? +k at x; = h— 0.9r,

X =h+07rand x3 = h — gr are plotted in Figure 2. The first tangent circles

are determined using the equations for the first tangent ellipses to the graph of a
function where the semi-major axis a and the semi-minor axis b are equal to . The
graphs are determined using the parametric equations (Gomez-Villarraga, 2021).

X, =h-09r x=h x=h+07r x3=h-—=r
2 x=h
@x =h-09rand x, = h+0.7r (b)x3:h—‘/T§r

Figure 2: First tangent circles of radius r to the function f(x) = \r2 = (x — h)2 + k
at different points.
Source: Own creation
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The first tangent circle to the function f(x) = \r2 —(x—h)?+katx; = h—0.9r
crosses the line y = k at two points. The first tangent circle at x, = &+ 0.7r does not

cross the line y = k. The first tangent circle to the function f(x) = y/r2 — (x — h)2 +k

atxy =h-— %r crosses the line y = k at one point. Several first tangent circles to the

functions f(x) = /r2 — (x — h)? + kand f(x) = —+/r?2 — (x — h)? + k are plotted in
Figure 3. The first tangent circles to the function f(x) = /r2 — (x — h)? + k generate
a crown-like graph, there some circles cross the line y = k and others do not. The

first tangent circles to the function f(x) = —+/r2 — (x — h)? + k coincide with the
original circle.

2000
= ‘\1‘

x

Figure 3: Several first tangent circles of radius r to the functions f(x) =

V2= (x—h? +kand f(x) = —r = (x = h? + k.

Source: Own creation

The equation for the first tangent circle to the graph of a function y = f(x) at
a point (x;, f(x;)) can be written using the general second-degree equation A +
Bixy+C ,-y2 + D;x+ E;y+ F; = 0 (Gémez-Villarraga, 2021). The roots are calculated
considering y = 0 in the equation. Thus:

Aix2+Dix+Fi=0 (5)
Where: ,
A= 3 (6)

(Goémez-Villarraga, 2021, p. 36)

DM 2 -

NN T

(Goémez-Villarraga, 2021, p. 36)
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0+ P 20 0)x = f(x)]
r? ryL+ [ ()2
(Goémez-Villarraga, 2021, p. 36)

The expressions for the coefficients A;, D; and F; can be found in Gémez-
Villarraga (2021). The quadratic equation has two solutions given by:

—D,' + ﬂDlZ - 4A,‘F,‘

F; = ¥

iy = T ©)
—D; - ||D? - 4AF,
X = o (10)

The discriminant D% — 4A;F; of the of the quadratic equation can be calculated
using the equations 6 and 8:

AL ) 8xif"(x:) 4

2L+ [ )2l P+ [f(x)]? " rt

D? — 4A;F; =

2 2 1)
A ALl L B X — f(x)]
ot P PP
Simplifying the equation 11:
7(x:)]2 . 312
D7 - anr, = G0 Bf) AP

PU+1SCP) pIT e 7

The first tangent circles to the function f(x) = /r2 — (x — h)? + k are considered.
Xi, f(x), f'(x;) can be replaced by x, f(x), f'(x) respectively in equation 12. f(x) is

\r? = (x — h)? + k and f'(x) is given by —ﬁ. Thus:

(x=h)?

D= 4AF, = A7 8P (- hP 48k 4P = (x—h)? + 2k = (x = b + K]
! 2 (x=h)? 2 r
U BN [

(13)

Simplifying the equation 13:

X—h 2
DA F - 4,.2(;(13,1,2 8NP 8k AR = (= W)+ 2k = = W) + A7) 14
T { ,2,(X,h)2+(x,,,)z} s [ 2P e f‘
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(—h)?

AT BV -G WP 48k AP = =P+ 2%k P — G- P + K
e - 2 'A
{727(.&11)2 } r /m

Aa—hP 87— (x—h?]  8k\lZ—(x—h)?
” ”

A

15)

D? —4A;F; =

D? —4AF; =
(16)
4 Ax-h? 8k —(x—h? 4

r2 r r r

4(x — h)? 7§+ 8(x — h)? 8k —(x—h)? 7i+4(x—h)2 B 8k \fr2 — (x — h)? 7% an
r #

2 _ F. o=
Di-dAFi=—g—-5+—0 E R

- - (18)

D? —4AF; = 5=

16— 16kyZ—(x—h7 12 4K

,.4

If the discriminant Di2 — 4A;F; is less than O the quadratic equation has two
imaginary solutions. If it’s equal to O, there is one real solution of multiplicity 2

Swokowski (1979); Swokowski & Cole (2012). Using the equation 18:

16(x—h? _16kyP—(x—hP? 12 42 _

- - — 1
7 E A s) &=
Ordering the equation 19
16(x —h)?>  16k+r2 = (x—h)? 12 4k?
— < — R 2
7 7 SEtT (20
If the center at (&, k) is on the x-axis (k = 0):
16(x—h)? 12
— < ol 2D
3 2
(r—hP? < (22)
4
3
< 3, (23)
2
3 3
—%rﬁx—hﬁ%r (24)
h—?rﬁxﬁh+§r 25)

Xi, f(x), f'(x;) can also be replaced by x, f(x), f(x) in the expressions for 24;
-D: 1 2 _ —_ h)2 4 ‘e ol ___x=h .
and —D;. f(x) is /r? — (x — h)> + k and f’(x) is given by N et Thus:
2
2Ai = (26)

72
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2 2f"(x)

-D;="2 - ——
P T+ )P
2(x—h)

_ 2x N VP2 =(e—hy?

B e
TN Esaoe

2(x—h)

2 \r2=(x—h)?
-D; = i + B i (29)

r? 2= (—h)2+(x—h)?
r ()2
2x-h)

2 \ri—(x—h)?
-D; = =<, N (30)

2

\P=(x=hy?
2 20x—=h
AN (x—h)

2 2

27)

(28)

Simplifying the equation 28

-D;= (€19

r

The expressions for —D; (equation 31) D? — 4A;F; (equation 18) and 2A; (equa-
tion 26) are replaced in the equations 9 and 10:

20 2k 160k IKNE-Geh? 1y a2
r2 r2 & &

r2 ”
Xie = ; (32)
=
Xip =2x—h+ \/4(x—h)2—4k r2—(x—h)? —3r2 — k2 (33)
20, 26k _ \/ 160—hy? 16k VP -(=h?  1p g2
r2 r2 r 4 r2 r
xi- = 5 (34)
=
Xi.=2x—h- \/4(x—h)2—4k r2—(x—-h?-3r2-k? (35)

If the center at (A, k) is on the x-axis (k = 0)

Xip = 2x—h+ A(x— h)? - 372 (36)
X =2x—h— \4(x — h)? - 3r2 (37)

The imaginary unit i can be expressed explicitly in the equations 33 and 35,
taking into account the complex number solutions of the quadratic equation (when
the discriminant D[2 —4A;F; is less than 0):
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Xip =2x—h+ \/(—1)[4(x —h)? —4k\r? = (x—h)?-3r2 - ki (38)

Xi-=2x—-h- \/(—1)[4(x —h)? —4k~r? = (x—h)* = 3r> — k?]i (39)

Simplifying the equations 38 and 39:

Xip =2x—h+ \/4k r?—(x—h)> +3r2 + k* — 4(x — h)%i (40)

Xi.=2x—h- \/4k r2—(x—h)?+3r2 + k2 —4(x - h)%i 41)

Calculating the distance between the point given by the equation 40 and the point

h + ki:
d= \/(2x—2h)2+

d= \/ 42 —8hx+4I2 +4k \[P2—(x—h)>+3r2 +K2 —4x2 + 8hx—4h? 2k \/4k VP == +3r2+K2-4(x-hp2+k2 (43)

2
\/4/< VP =(x=h)2+3r2+k2 74(x7h)27k] 42)

d:\/4k\/r2—(x—h)2—2k\/4k P (x— R 43 k2 —A(x—h2 + 2K+ 32 (44)

Similarly, the distance between the point given by equation 41 and the point A+ ki
can be calculated:

d= \/(2x —2h)2 +

d= \/(2x—2h)2+[\/4k (k=R 43+ k2 —A(x—h? +k

2
—\/4k r2—(x—h)2+3r2+k2—4(x—h)2—k] (45)

2

(46)

d= \/ 42 —8hx+4h2+4k \[r2—(x—h)2+3r2+k2 ~4x2 +8hx—4h2+2k \/4k V2 —(x—h2+3r2 4k —d(x—h2+k2 - (47)

d:\/4k r2—(x—h)2+2k\/4k P (x— R 432 4k —A(x—h? + 2K+ 32 (48)

If the center of the circle at (h, k) is any point with 2 # 0 and k # 0, the distance d
of the complex roots of the first tangent circles of radius r to the real-valued function
F(x) = \/r2 = (x — h)? + k that represents the superior part of a circle with center at
(h, k) and radius r is not constant (equations 44 and 48). So, the complex roots are
not on a circle in the complex plane. But if the center of the circle at (&, k) is any
point on the x-axis (k = 0), the distance d in equations 44 and 48 is:
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d=2V3 (49)

In this case the complex roots are on a circle in the complex plane. A complex
function can be established using the complex solutions of the quadratic equation.
Restating the equations 36 and 37 as a complex function:

f(2) =2z—h= Az - h)?-3r? (50)

Using the restriction in the domain given by equation 25:

h—?rSRe(Z)£h+§ and Im(z) =0 (51)

The complex function given by the equation equation 50 with the domain given by
the equation 51 is a circle in the complex plane with radius r \3 (equation 49).The
complex function represents the complex roots (discriminant less than zero) and the
unique real solution (discriminant is equal to zero) of the first tangent circles of ra-
dius r to the real-valued function f(x) = \/r? — (x — h)? that represents the superior
part of a circle with center on the x-axis at (h,0) and radius r.

As mentioned before, the first tangent circles to the function f(x) = —/r2 — (x — h)?+
k coincide with the original circle x;, f(x;), f'(x;) can be replaced by x, f(x), f’'(x)
respectively in the equation 12. f(x) = —/r2 = (x = h)? + k and f’(x) is given by:
—=__ Thus:

(—h)?
P’ 8NP G hP -8k 4P = (= b = kNP - G-+

D? —4AF; = s (52)
201 + 5= x=h)2
r { VL(Hl)Z} 4l '_2(_(X . yRe
Simplifying the equation 52:
i 8VIZ = (k=2 =8k A2 = (x = h? = 2k~[Z = (x= h)? + K]
2 e —(x—h? - 2 - (x—h)? - —(x-h?+
D} —4AF; = - 1()7/z o r°—(x A - a r2—(x (53)
G e €. ) i ) 12— (k)2 + ()2
Ly r 7&‘27”;;2 i
4 z(ffh_)i T 8\VIE— (=R -8k AP —(x—h)? - 2k\R = (x— 1) + K2
D? —4AF; = 0 - 3 (54)
2 r
re—=—-= 3 2
12— (x—h)? r ‘/7'_2_()_41)2
Ax—h? 8P —(x—h?] SkP—(x—hZ 4 A(x—h? SkyP—(x—hP 4k
D? — 4A;F; = + - - =+ + - — (55
i E = E I E A 09
AV AV 2 _ — h)2 — )2 2 _ — h)2 2
D;__4AiFl_=4(x P8 Seoh? SRS GRE 4 de-h? | SVE-GoRE MR oo

r? r r r2 r r I
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2 g = LW
D} —4AiF; = — ~ — (57
Xi, f(x), f'(x;) can also be replaced by x, f(x), f/(x) in the expressions for 24;
(equation 26) and —D; (equation 27). f(x) is —y/r? — (x — h)* + k and f’(x) is given
. Thus:

r2—(x—h)?

2
24; = = (58)

2(x—h)

2 \r2—=(x—h)?
-D; = X Nrtah (59)

2 2
r (x—h)?
r V 1+ r2—(x—h)?

2(x—h)

2 r2—(x—h)?
X_ Ny (60)

2 - [PGohr ooy
P—(—h)?

2(x—h)
2x r2—(x—h)?
— =

2
-p,= 2 (©)
r

(61)

The expressions for —D; (equation 62), Dlz — 4A;F; (equation 57) and 2A; (equa-
tion 58) are replaced in the equations 9 and 10:

A R
Xiy = 5 (63)
=
Xie =h+ Vr2 - k2 (64)
T PO
X = — . (65)
=
Xi-=h— Vr2 = k2 (66)
The roots are imaginary if 72 — k2 is less than 0:
-k <0 (67)

Simplifying equation 67:
?<i? (68)
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r < |k| (69)

k<-r and k>r (70)

If the center at (h, k) is on the x-axis (k = 0) in the equations 64 and 66:

X =h+r (71)

Xi—- = h—r (72)

The previous analysis can also be done with second tangent circles of radius r to

the functions f(x) = yr?2 — (x — h)?2 + kand f(x) = — /r2 — (x — h)? + k (Figure 4).
Similarly, the second tangent circles to the function f(x) = +/r? — (x — h)? + k co-
incide with the original circle. The second tangent circles to the function f(x) =

—+/r?2 — (x — h)? + k generate an inverted crown-like graph, there some circles cross
the line y = k and others do not.

x=h

Figure 4: Several second tangent circles of radius r to the functions f(x) =

VP =G+ kand f() = — P —Gr— P + k.

Source: Own creation

The equation for the second tangent circle to the graph of a function y = f(x) at
a point (x;, f(x;)) can be written using the general second-degree equation (Gémez-
Villarraga, 2021). The roots are calculated considering y = 0 obtaining the equa-
tion 5. The quadratic equation has two solutions (equations 9 and 10). The coeffi-
cients for the second tangent circle are given by:

A= (73)
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2f'() 2

Do 2 2 74
P+ 7 "
E=ﬁ+wmw_ﬂfmm—ﬂMI (75)

r? rNT+ [ ()P
(Goémez-Villarraga, 2021, p. 37)

The discriminant Di2 — 4A,F; of the quadratic equation can be calculated using
the equations 73-75

ALf ()P N 8/ (x) _ALf )P
PP BT+ )P rt

The second tangent circles to the function f(x) = —+/r2 —(x—h)? + k are
considered. f(x) is —/r? — (x — h)>+k and f’(x) is given by \/r;—;(x%h)z xi, fx), f1(xp)
can be replaced by x, f(x), f'(x) respectively in the equations 73-76 to obtain
Df — 4A;F;, 2A; and —D;. Then, these results are replaced in the equations 9 and
10 for x;; and x;_ and if the center at (&, k) is on the x-axis (k = 0), the same expres-
sions as in the equations 36 and 37 are obtained.

The complex function given by the equation 50 with the domain given by the
equation 51 is a circle in the complex plane with radius r\3 (equation 49). The
complex function represents the complex roots (discriminant less than zero) and the
unique real solution (discriminant is equal to zero) of the second tangent circles
of radius r to the real-valued function f(x) = —+/r? — (x — h)? that represents the

inferior part of a circle with center on the x-axis at (h,0) and radius r.

The Figure 5 shows the complex mapping of h — gr < Re(z) < h+ ‘/T§r and

Im(z) = 0 using the function f(z) = 2z — h = \/4(z — h)? — 3r2%.

D? — 4A;F; = (76)

Im(z) Im[f(2)]

) =22 = hHEE RT3

f(2)
[ .
' ! Re[f(z
P /
\ f(@) =2z-h-az—h)? —3r2 ,I
\,
Y V3 S Ve
h——vr  Rt+—r S Prad
2 2 TSeadae-
Re(z)=h Re(z) Re[f(2)]=h

Figure 5: Complex mapping of /1 — %r <Re(z) <h+ gr and /m(z) = 0 using the

function f(z) = 2z — h + \4(z — h)? — 3r2.

Source: Own creation
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3 Conclusions

The complex function f(z) = 2z — h + /4(z — h)?> — 3r? with the domain & — g” <

Re(z) < h+ gr and Im(z) = 0 is a circle in the complex plane with radius r V3.

The complex function represents the complex roots (discriminant less than zero)
and the unique real solution (discriminant is equal to zero) of the first (or second)
tangent circles of radius r to the real-valued function f(x) = +/r2 — (x — h)? (or

J(x) = —+/r2 = (x — h)?) that represents the superior (or inferior) part of a circle
with center on the x-axis at (A, 0) and radius r.
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