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The aim of this work is to present a methodology that allows in a simple way to compute the 

regulatory capital for credit risk. The Vasicek model is a popular one-factor model that 

derives the limiting form of the portfolio loss. This model will allow calculating different risk 

measures such as, for example, the expected loss (EL), the value at risk (VaR) and the 

Expected Shortfall (ES). Due to the difficulty of obtaining real data, simulated data were 

used. For this study, three different portfolios were proposed: the first was a homogeneous 

portfolio that had the same weighting among all loans, then a portfolio with unequal weights 

was considered and finally a mixed portfolio with different weights and different probabilities 

of default was used. Monte Carlo simulation with 100.000 scenarios served as our 

benchmark. It was observed that the Vasicek model correctly estimates the results of the 

homogeneous portfolio. On the other hand, when the portfolio is not homogeneous (portfolio 

unequal weights and mixed) the Vasicek model correctly estimates the mean (Expected 

Losses) but underestimates the Value at Risk and the Expected Shortfall. This is because the 

approximation of the Vasicek model is good on average but not at the extremes.  
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El objetivo de este trabajo es presentar una metodología que permita calcular de manera 

simple el capital regulatorio para el riesgo de crédito. El modelo Vasicek es un modelo 

popular de un factor que deriva la forma limitante de la pérdida de cartera. Este modelo 

permitirá calcular diferentes medidas de riesgo, como, por ejemplo, la pérdida esperada 

(PE), el valor en riesgo (VaR) y el déficit esperado (DE). Debido a la dificultad de obtener 

datos reales, se utilizaron datos simulados. Para este estudio, se propusieron tres carteras 

diferentes: la primera fue una cartera homogénea que tenía la misma ponderación entre 

todos los préstamos, luego se consideró una cartera con ponderaciones desiguales y, 

finalmente, se utilizó una cartera mixta con diferentes ponderaciones y diferentes 

probabilidades de incumplimiento. La simulación de Monte Carlo con 100.000 escenarios 

sirvió como nuestro punto de referencia. Se observó que el modelo de Vasicek estima 

correctamente los resultados de la cartera homogénea. Por otro lado, cuando la cartera no 

es homogénea (pesos desiguales y mixtos de la cartera), el modelo de Vasicek calcula 

correctamente la media (pérdidas esperadas) pero subestima el valor en riesgo y el déficit 

esperado. Esto se debe a que la aproximación del modelo de Vasicek es buena en promedio, 

pero no en los extremos. 

 

 

Palabras claves: Préstamo de cartera, Riesgo de crédito, Distribución de pérdidas, Modelo 

Vasicek, Medidas de riesgo, Pérdida esperada, Valor en riesgo, Déficit esperado. 
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1. Introduction  

  

Credit risk concerns the risk of loss arising from an obligor inability to honor its 

obligations. Among other sources of risk, it is the most important one that financial 

institutions have to deal due to the large exposures concentrated in the portfolios. Because of 

this, financial institutions must quantify credit risk at portfolio level. For this purpose, several 

risk measures based on the portfolio loss distributions will be presented. The expected and 

unexpected loss, are defined as the expectation and standard deviation, respectively, of the 

portfolio loss variable. Further risk measures are the Value-at-Risk (VaR) and the Expected 

Shortfall (ES) which will be presented in the next section. All of these risk measures have a 

lot of advantages as, for example, the aggregation from a single position to the whole 

portfolio. Moreover, diversification effects and netting can be reflected and the loss 

distributions are comparable across portfolios.  

  

From a regulator’s perspective a clear understanding of the techniques commonly used 

would enhance supervisory oversight of financial institutions. The motivation to develop 

credit risk models stemmed from the need to develop quantitative estimates of the amount of 

economic capital needed to support a financial institutions risk taking activities. Minimum 

capital requirements have been coordinated internationally since the Basel Accord of 1998 

published by the Basel Committee on Banking Supervision housed at the Bank for 

International Settlements (BIS).   

  

When estimating the amount of economic capital needed to support their credit risk 

activities, financial institutions employ an analytical framework that relates the overall 

required economic capital for credit risk to their portfolio’s probability density function (PDF) 

of credit losses, also known as loss distribution of a credit portfolio. Figure 1 shows this 

relationship.  

  

Figure 1. Loss distribution of a credit portfolio  

  
Fuente: Elaboración propia.  
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The Basel Committee established three models to determine the capital requirement for 

credit risk: i) Standard Approach (SA), ii) Foundational Internal-Rating Based Approach 

(FIRD) and iii) Advanced Internal-Rating Based Approach (AIRB). Figure 2 indicates the 

different ways to determine the capital required for credit risk and the parameters according to 

the models.  

 Figure 2. SA and IRBs for calculating credit risk capital.  

  
 Fuente:  MathWork Inc. (2018) ”A Practical Guide to Modeling Financial Risk with 

MATLAB”. 

 

Today, Uruguayan regulation only recognizes the Standardized Approach (SA), for this 

reason, it will be proposed to introduce more advanced methodologies. These methodologies 

are based on the Vasicek model that will be discussed later.  

  

The paper is structured as follows: first, it will present some risk measures definitions. 

After it will present the Vasicek Models, then it will present the result of the study and end 

with the conclusion.  

 

2. Risk measures  

  

Financial risk is the prospect for financial loss due to unforeseen changes in underlying 

risk factors (these factors are those that provide uncertainty in financial results). Financial 

risks can be classified in different ways, such as market risk (or the risk of loss arising from 

unexpected changes in market prices or market rates), credit risk (or the risk of loss arising 

from the failure of a counterparty to make a promised payment), liquidity risk, operational 

risk (or the risk of loss arising from the failures of internal systems or the people who operate 

in them) and others (as legal risk, reputational risk) [3].  

  

This section discusses statistical summaries of the loss distribution that quantify the 

portfolio risk. These summaries will be called as risk measures. First, the risk factor, loss 

distribution, expected (𝐸𝐿) and unexpected loss (𝑈𝐿) will be described. Then the so-called 

coherence axioms, which are properties that are considered desirable for risk measures, will 



be presented. Subsequently, two widely used financial risk measures will be discussed: the 

Value at Risk (𝑉𝑎𝑅) and the Expected Shortfall (𝐸𝑆).  

  

2.1.           Risk Factor, Loss Distribution, Expected and Unexpected Loss  

 

Consider a credit portfolio consisting of 𝑁 obligors and let 𝑉𝑡 denote its current value. 

The portfolio value is assumed to be observable at time 𝑡. The portfolio loss over the time 

interval from 𝑡 to 𝑡 + 1 is written as   

 
𝐿𝑡+1 = − (𝑉𝑡+1 − 𝑉𝑡)  

  

Because 𝑉𝑡+1 is unknown, 𝐿𝑡+1 is random from the perspective of time 𝑡. The distribution 

of 𝐿𝑡+1 will be referred to as the loss distribution. The portfolio value 𝑉𝑡 will be modeled by a 

function of time and a set of 𝑑 underlying risk factor. It will be assume that each obligor 𝑖 is 

characterized by three risk factors:  

  

• Probability of default (𝑃𝐷) is the average percentage of obligor that will default over 

a  

one-year period.  

• Exposure at default (𝐸𝐴𝐷) gives an estimate of the amount outstanding if the 

borrower defaults.  

• Loss given default (𝐿𝐺𝐷) represents the proportion of the exposure (𝐸𝐴𝐷) that will 

not be recovered after default.  

The most common measure of credit risk is expected loss (𝐸𝐿), which is the average loss 

in value of the credit portfolio over a given time period or the lifetime of the credit 

instrument. Depending on the nature of credit instruments, two alternative ways to estimate 

the expected loss are by looking at default events only and by looking at the loss in value due 

to the changes in credit quality or credit eating [13].  

 

Typically, the expected loss of a loan portfolio (e.g. credit card, home and auto loans, 

personal lending) can be measured as 

  
    𝑁 

𝐸𝐿 = ∑ 𝑃𝐷𝑖 × 𝐿𝐺𝐷𝑖 × 𝐸𝐴𝐷𝑖  
   𝑖=1 

 

Unlike Expected Loss, the Unexpected Loss (UL) is not an aggregate of individual loss 

but rather depends on loss correlations between all loans in the portfolio [2]. The deviation of 

losses from the EL is usually measured by the standard deviation of the loss variable. The 

portfolio standard deviation of credit losses can be decomposed into the contribution from 

each of the individual credit facilities:  
𝑁 

𝑈𝐿 = ∑ 𝜎𝑖𝜌𝑖  
𝑖=1 

 



COMPENDIUM, ISSN Online 1390-9894, Volumen 5, Nº 12, Diciembre, 2018, pp 77-90 

where 𝜎𝑖 denotes the stand-alone standard deviation of credit losses, and 𝜌𝑖 denotes the 

correlation between credit losses on the overall portfolio.  

   

2.2.           Coherent Measures of Risk  

 

Artzner et al. (1999) [1] argue that an appropriate measure of risk should satisfy a set of 

properties termed as the axioms of coherence. Let financial risk be represented by a set 𝑀 

interpreted as portfolio losses, i.e. 𝐿 𝑀. Risk measures are real-valued functions 𝜌: 𝑀 → ℝ. 

The amount 𝜌(𝐿) represents the capital required to cover a position facing a loss 𝐿. The risk 

measure 𝜌 is coherent if it satisfies the following four axioms:  

  

• Monotonicity: 𝐿  → 𝜌 .  

• Positive homogeneity: .  

• Translation invariance: 𝜌 .  

• Subadditivity: 𝜌 .  

  

Monotonicity states that positions that lead to higher loss in every state of the world 

require more risk capital. Positive homogeneity implies that the capital required to cover a 

position is proportional to the size of that position. Translation invariance states that if a 

deterministic amount 𝑙 is added to the position, the capital reeded to cover 𝐿 is changed by 

precisely that amount. Subadditivity reflects the intuitive property that risk should be reduced 

or at least not increased by diversification, i.e. the amount of capital needed to cover two 

combined portfolios should not be greater than the capital needed to cover the portfolios 

evaluated separately.   

  

2.3.           Value at Risk  

 

Value-at-Risk is defined as the sufficient capital to cover, in most instances, losses from a 

portfolio over a holding period of a fixed number of days [8]. Assume a random variable 𝑋 

with continuous distribution function 𝐹 models losses on a certain financial portfolio over a 

certain time horizon. 𝑉𝑎𝑅𝛼 can then be defined as the 𝛼-th quantile of the distribution 𝐹 

  

𝑉𝑎𝑅𝛼 = 𝐹−1
 (1 − 𝛼)  

 

 where 𝐹−1
 is defined as the inverse of the distribution function 𝐹. 𝑉𝑎𝑅𝛼 is the risk 

measure chosen in the Basel II Accord for the evaluation of capital requirements. For this 

paper we compute a 0.1% 𝑉𝑎𝑅 over a one-year holding period.   

  

However, by definition 𝑉𝑎𝑅𝛼 gives no information about the size of the losses that occur 

with probability smaller than 1-α, i.e. the measure does not tell how bad it gets if things go 

wrong [18]. Given these problems with 𝑉𝑎𝑅𝛼, will be present an alternative measure which 

satisfies this.  

 



2.4.           Expected Shortfall  

 

Another measure of risk is the expected shortfall (ES) or the tail conditional expectation 

that estimates the potential size of the loss exceeding VaR [8]. The expected shortfall is 

defined as the expected size of a loss that exceeds 𝑉𝑎𝑅𝛼  

  

𝐸𝑆𝛼 = 𝐸(𝑋 | 𝑋 > 𝑉𝑎𝑅𝛼)   

  

Expected Shortfall, as opposed to Value at Risk, is a coherent risk measure in the sense 

that satisfies properties of monotonicity, sub-additivity, homogeneity, and translational 

invariance  

[8].  

  

3. Vasicek model   

 

To represent the uncertainty about futures events, it specify a probability space (Ω, ℱ ,  ) 

with sample space Ω, 𝜎-algebra ℱ , probability measure   and with filtration (ℱ 𝑡)𝑡≥0 satisfying 

the usual conditions. It fix a time horizon 𝑇 > 0, usually 𝑇 equals one year.  

Following Merton’s approach (1974)[14], Vasicek [20][21][22] assumes that a loan 

defaults if the value of the borrower’s assets (𝐴) at the loan maturity 𝑇 falls below the 

contractual value 𝐵 of its obligations payable. Let 𝐴𝑖 be the value of the 𝑖-th borrower’s assets, 

described by the process  

𝒹𝐴𝑖 = 𝜇𝑖𝐴𝑖𝒹𝑡 + 𝜎𝑖𝐴𝑖𝒹𝑋  

where 𝜇𝑖 and 𝜎𝑖 are the drift and volatility of the value, and 𝑋𝑖 is a Brownian motion, i.e. a 

random walk in continuous time in which the change over any finite time period is normally 

distributed with mean zero and variance equal to the length of the period, and changes in 

separate time periods are independent of each other. Solving this stochastic equation one 

obtains the value of the 𝑖-th firm’s assets at time 𝑇 as  

𝐴  𝑇  𝑒         
 
 
    

    √    

 

The 𝑖-th firm defaults if 𝐴𝑖(𝑇) < 𝐵𝑖, so the probability of such an event is  

 

𝑝𝑖 =  [𝐴𝑖(𝑇) < 𝐵𝑖] =  [𝑋𝑖 < 𝑐𝑖] = 𝒩(𝑐𝑖)  

where  

𝑐  
  𝐵    𝐴    𝑇  

 
 
  

   

  √𝑇
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represents the default threshold and 𝒩 is the cumulative normal distribution function.   

Consider a homogeneous portfolio consisting of 𝑁 loans characterized by:  

• Equal dollar amount.  

• Equal probability of default 𝑝.  

• Flat correlation coefficient 𝜌 between the asset values of any two companies.  

• The same term 𝑇.  

Let 𝐷𝑖 be the default indicator of obligor 𝑖 taking the following values.         

             𝐷  {
                            

                                     
 
 

Let   be the portfolio percentage gross loss (before recoveries),  

 
            𝑁 

  = 
 

 
 ∑𝐷𝑖  

             𝑖=1 

If the events of default on the loans in the portfolio were independent of each other, the 

portfolio loss distribution would converge, by the central limit theorem, to a normal 

distribution as the portfolio size increases. Because the defaults are not independent, the 

conditions of the central limit theorem are not satisfied and   is not asymptotically normal. 

However, the distribution of the portfolio loss does converge to a limiting form.  

The variables {𝑋𝑖}=1,…,𝑁 are jointly standard normal with equal pair-wise correlation 𝜌, 

and can be expressed as:  

𝑋  √𝜌𝑆  √  𝜌    

Where 𝑆 and  𝑖 are mutually independent standard normal variables. The firm-value of 

obligor 𝑖 is represented by a common, standard normally distributed factor 𝑆 component 

(usually called systematic factor) and an idiosyncratic standard normal noise component  𝑖. 

The systematic risk can be seen as the macro-economic conditions and affects the 

creditworthiness of al obligors simultaneously. The idiosyncratic risk represents conditions 

inherent to each obligor and this is why they are assumed to be independent of each other.   

When the systematic risk is known (or fixed), the conditional probability of loss on any 

one loan is:  

𝑝𝑖(𝑆) =   [𝐷𝑖 = 1 |𝑆 = 𝑠] =   [𝐴𝑖(𝑇) < 𝐵𝑖 |𝑆 = 𝑠]  

 

   [𝑋    𝑐  |   ]    [√𝜌𝑆  √  𝜌   𝑐 |𝑆  𝑠] 

 



  [   
    √ 

√   
|𝑆  𝑠 ]    𝒩 

𝒩  
      √ 

√   
) 

The quantity 𝑝𝑖(𝑆) provides the loan default probability under the given scenario (S). This 

can be interpreted as assuming various scenarios for the economy, determining the probability 

of a given portfolio loss under each scenario, and then weighting each scenario by its 

likelihood.  

 Conditional on the value of 𝑆, the variable 𝐷𝑖 are independent equally distributed 

variables with a finite variance. The portfolio loss   conditional on 𝑆 converges, by the law of 

large numbers, to its expectations 𝑝(𝑆) as 𝑁 ⟶ ∞. So the cumulative distribution function of 

loan losses   on a very large portfolio is in the limit:  

 [  ≤ x] = 𝒩  √
  𝜌 𝒩      𝒩     

√𝜌
  

This result is given in Vasicek (1991).  The portfolio loss is described by two-parameter 

distribution with the parameters 0 < 𝑝, 𝜌 < 1.  

𝐹(𝑥; 𝑝, 𝜌): =𝒩  √
  𝜌 𝒩      𝒩     

√𝜌
  

 

The distribution possesses the following symmetry property:   

(𝑥; 𝑝, 𝜌) = 1 − 𝐹(1 − 𝑥; 1 − 𝑝, 𝜌)  

The loss distribution has the density:  

 

  x    𝜌  √
  𝜌

𝜌
 𝑒

 
 
  

 √    𝒩      𝒩        
 
 
 𝒩       

 

 

The mean of the distribution is 𝔼( ) = 𝑝 and the 𝛼-percentile value of   is given by:  

  𝛼 = (𝛼; 1 − 𝑝, 1 − 𝜌)  

The portfolio loss distribution is highly skewed and leptokurtic.   
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                         Figure 3. Loss distribution 𝑝 = 0,05 and 𝜌 = 0.15

   

                       Fuente: Elaboración propia. 

The convergence of the portfolio loss distribution to the limiting form above actually 

holds even for portfolios with unequal weights. Let the portfolio weights be 𝑤1,𝑤2,… , 𝑤𝑁 

with 

 ∑ 𝑤𝑖 = 1. The portfolio loss:  

𝑁 

  = ∑𝑤𝑖𝐷𝑖  
𝑖=1 

Conditional on S converges to its expectation p(S) whenever ∑ 𝑤𝑖
2 
→ 0. In other words, 

if the portfolio contains a sufficiently large number of loans without it being dominated by a 

few loans much larger than the rest, the limiting distribution provides a good approximation 

for the portfolio loss.  

  

4. Empirical Result   

  

In this section an application of the Vasicek model will be presented. Due to the difficulty 

of obtaining real data, I chose to build three simulated portfolios. The first will be a 

homogeneous portfolio which will have the same weighting among all the loans, then a 

portfolio with unequal weights will be considered and finally a mixed portfolio with different 

weights and different probability of default will be used. The portfolios are as following:  

  

 

 

 

 

 

 

 



 

• Portfolio 1 - “Homogenous”.   

 

Exposure 1 

# of obligors 10.000 

PD 2,00% 

 

• Portfolio 2 - “Unequal weights”.  

 

Exposure 1 10 50 100 150 

# of obligors 6.750 50 20 10 5 

PD 2,00% 2,00% 2,00% 2,00% 2,00% 
 

• Portfolio 3 - “Mixed”.  

 

Exposure 1 10 50 100 150 

# of obligors 6.750 50 20 10 5 

PD 2,25% 2,00% 1,75% 1,50% 0,75% 

  

In all cases it will be used 𝐿𝐺𝐷 = 50%, 𝜌 = 9% and the total exposure is $ 10.000. The 

portfolio 2 and 3 are called lower granularity since the largest obligor has an exposure 150 

times larger than the smallest obligor. Exposure concentration is not really significant as the 

weight of the largest obligor is less than 1,5%.  

For each of the portfolios, the expected loss (𝐸𝐿), the value at risk 𝑉𝑎𝑅𝛼 and the expected 

shortfall 𝐸𝑆𝛼 are calculated. Monte Carlo simulation with 100.000 scenarios serves as our 

benchmark. The standard deviation and the 95% confidence intervals (CI) are reported along 

with the point estimates.  

Table 1 shows the results of the Expected Loss, the Value at Risk to 99.9% and the 

Expected Shortfall to 99.9% for the three portfolios. In it, it can be seen that the Vasicek 

model correctly estimates the results of the homogeneous portfolio; this is corroborated given 

that the estimates of the Vasicek model are within the confidence interval of the simulated 

model. On the other hand, when the portfolio is not homogeneous (portfolio 2 and 3) the 

Vasicek model correctly estimates the mean (Expected Losses) but underestimates the Value 

at Risk and the Expected Shortfall. This is because the approximation of the Vasicek model is 

good on average but not at the extremes.  

Due to the lower granularity presented by portfolios 2 and 3, there is a bias in the 

calculation of economic capital for credit risk. Product that the Value at Risk to 99.9% 

underestimates the real value. It is for this reason that several extensions of the Vasicek model 

have been proposed for non-homogeneous portfolios using techniques like granularity 

adjustment.  
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Table 1: Result of the risk measures for each portfolio. 

                     Portfolio  𝐸𝐿  𝑉𝑎𝑅99,9%  𝐸𝑆99,9%  

 Vasicek  100  593,93  688,90  

1 Benchmark (s.d.)  99,92 (0,25)  585,50 (7,92)  686,28 (15,99)  

 95% CI  [99,44;100,41]  [569,98;601,02]  [654,95;717,62]  

 Vasicek  100  593,93  688,90  

2 Benchmark (s.d.)  99,55 (0,27)  624,50 (9,96)  717,78 (12,84)  

 95% CI  [99,02;100,07]  [604,97;644,03]  [689,62;739,95]  

 Vasicek  100  589,67  683,57  

3 Benchmark (s.d.)  99,65 (0,26)  619,00 (8,36)  717,18 (13,38)  

 95% CI  [99,13;100,17]  [602,62;635,38]  [690,96;743,40]                                                                

Fuente: Elaboración propia. 

5. Discussion  

 

The objective of this paper was to present more sophisticated models to determine the 

regulatory capital for credit risk of those currently used by the Uruguayan regulation 

(Standardized Approach). For this reason, the Vasicek model was presented to determine the 

loss distribution of a credit portfolio and its main properties. The Vasicek model proposed in 

1991 followed the approach presented by Merton in 1974. Currently, these types of models 

have been further developed by solving some of the problems found in this document that 

occur in practice, for example, the problem of homogeneity of the portfolio. However, 

Vasicek's model was fundamental from the regulatory point of view to estimate the amount of 

economic capital needed to support the credit risk activities of financial institutions.  

Also it was discussed statistical summaries of the loss distribution that quantify the 

portfolio risk. The risk factor, loss distribution, expected (𝐸𝐿) and unexpected loss (𝑈𝐿) were 

described. Then the so-called coherence axioms, which are properties that are considered 

desirable for risk measures, were presented. Subsequently, two widely used financial risk 

measures were presented: the Value at Risk (𝑉𝑎𝑅) and the Expected Shortfall (𝐸𝑆). All of 

these risk measures have a lot of advantages as, for example, the aggregation from a single 

position to the whole portfolio. Moreover, diversification effects and netting can be reflected 

and the loss distributions are comparable across portfolios.  

For this study, three different portfolios were proposed: the first was a homogeneous 

portfolio that had the same weighting among all loans, then a portfolio with unequal weights 

was considered and finally a mixed portfolio with different weights and different probabilities 

of default was used. Monte Carlo simulation with 100.000 scenarios served as our benchmark. 

The Expected Loss, the Value at Risk to 99.9% and the Expected Shortfall to 99.9% were 

calculated for the three portfolios. It was observed that the Vasicek model correctly estimates 

the results of the homogeneous portfolio. On the other hand, when the portfolio is not 

homogeneous (portfolio unequal weights and mixed) the Vasicek model correctly estimates 

the mean (Expected Losses) but underestimates the Value at Risk and the Expected Shortfall. 

This is because the approximation of the Vasicek model is good on average but not at the 

extremes.  



Various extensions for non-homogeneous portfolios have been proposed in literature. The 

granularity adjustment technique was introduced by Gordy (2003) [9]. Wilde (2001) [23] and 

Martin and Wilde (2002) [12] have derived a general closed-form expression for the 

granularity adjustment for portfolio VaR. More specific expressions for a one-factor default-

mode Mertontype model have been derived by Pykhtin and Dev (2002) [15]. Emmer and 

Tasche (2003) [4] have developed an analytical formulation for calculating VaR contributions 

from individual exposures, and Gordy (2004) [10] has derived a granularity adjustment for 

ES.   

Other authors include in the model a stochastic pattern for the loss given default, for 

example, Frye-Jacobs (2012) [5], Frye (2000) [6], Pykhtin (2003) [17], Tasche (2004) [19], 

Giese (2005) [7] and Hillebrand(2006) [11]. Finally, a possible extension of this research is 

use Multi-factor models, like Pykhtin (2004) [16], instead of one-factor models.  
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