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Resumen 

El modelo Lee-Carter es una de las metodologías más populares para 

pronosticar tasas de mortalidad. Es un modelo simple que se ha 

utilizado con éxito en los EE. UU. y varios países, cuyos parámetros 

luego se tratan como series de tiempo para producir pronósticos de 

mortalidad. Este trabajo describe la aplicación del modelo Lee-

Carter a las tasas de mortalidad específicas por edad y género en 

Uruguay. Estas tasas están disponibles para el período que va de 

1974 a 2020. Concluimos que el parámetro de tendencia temporal 

𝓚𝒕 puede modelarse como un paseo aleatorio con deriva y 

utilizamos las tasas de mortalidad previstas para el período de tiempo 

que va de 2021 a 2050 para proyectar la esperanza de vida al nacer. 

Códigos JEL:  C53, J11 

 

Keywords:  
mortality 

modeling, 

mortality 

forecasting, life 

expectancy, 

insurance, 

longevity risk 

Abstract 

The Lee-Carter model is one of the most popular methodologies for 

forecasting mortality rates. It is a simple model that has been used 

successfully in the US and several countries, whose parameters are 

then treated as time series to produce mortality forecasts. This paper 

describes the application of the Lee-Carter model to age-specific 

death rates by gender in Uruguay. These rates are available for the 

period that goes from 1974 to 2020. We concluded that the time trend 

parameter 𝓚𝒕 can be model like a random walk with drift and we use 

the mortality rates forecast for the time period that goes from 2021 

to 2050 in order to project life expectancy at birth. 
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INTRODUCCIÓN 

      According to World Bank data, in the last 60 

years, life expectancy at birth for the world 

population has increased from 51 years in 1960 to 

72 years in 2020. This is equivalent to an increase 

in life expectancy of 4 months for each year. This 

increase in life expectancy, though a sign of social 

progress, poses a challenge to governments, 

private pension plans and insurers because of its 

impact on pension and health costs. Actuaries 

have recognized the problems caused by an aging 

population and rising longevity and have thus 

devoted significant attention to the development 

of statistical techniques for the modeling and 

projection of mortality rates. 

There is a large literature on human mortality 

modelling. Very early on, Gompertz (1825) 

suggested that mortality increases exponentially 

with age during the adult years of life. Makeham 

(1860) extended the Gompertz (1825) model by 

adding an age-dependent component to better 

capture younger age mortality. These models are 

static and one-dimensional, and cannot be used 

for mortality forecasting. Subsequently, several 

new approaches were developed using stochastic 

models, one of the most influential approaches is 

the mortality model proposed by Lee and Carter 

(1992).  

The Lee-Carter model has inspired numerous 

variants and extensions. For instance, Lee and 

Miller (2001), Booth et al. (2002), and Brouhns et 

al. (2002) have proposed alternative estimation 

approaches in order to improve the goodness-of-

fit and the forecasting properties of the model. In 

particular, Brouhns et al. (2002) propose a more 

formal statistical approach to estimating the 

parameters by embedding the Lee-Carter model 

into a Poisson regression setting. Other authors 

have extended the Lee-Carter model by including 

additional terms, such as multiple bilinear age-

period components (Renshaw and Haberman 

2003; Hyndman and Ullah 2007), or a cohort 

effect term (Renshaw and Haberman 2006). 

Our interest in the Lee-Carter model arises 

from its simplicity, it only has three parameters, 

which are easy to interpret. It must be kept in 

mind that most databases, like World Bank data, 

group data at advanced ages, for example, over 

80. This is due to the scarce and volatile nature of 

mortality data at these ages. For this reason, we 

will use the technique proposed by in Coale and 

Guo (1989) to extend mortality to older ages. 

The paper is structured as follows: first we 

present how we constructed the historical data and 

then a description of the model that we will use. 

We will then present the study results for the data 

series and end with the conclusion. 

METODOLOGY 

This paper combines Uruguayan mortality 

data form the Ministry of Public Health of 

Uruguay (MSP) and a dataset provided by the 

World Bank DataBank (WBD). For the remainder 

of this paper, we will refer to data from these 

sources as MSP data and WBD data, respectively. 

The MSP receives and processes data on live 

births, deaths, and fetal deaths for statistical 

purposes. These data are widely used to calculate 

various indicators of mortality, birth and fertility. 

They therefore constitute a basic input for the 

development, monitoring and evaluation of 

different policies, plans and programs both in the 

health sector and in other economic and social 

sectors of the country. From this database we 

download the deaths per year for different sex and 

age group from 1974 to 2020. 

The WBD is an online web resource that 

provides simple and quick access to collections of 

time series data. It has advanced functions for 

selecting and displaying data, performing 

customized queries, downloading data, and 

creating charts and maps. Users can create 

dynamic custom reports based on their selection 

of countries, indicators and years. For this paper 

we use the World Developed Indicators (WDI) 

database, which contains a series of demographic 

indicators for more than 250 countries, including 

Uruguay. From this database we download the 

midyear estimate population per year for different 

sex and age group from 1974 to 2020. 
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FIGURE 1 

 Mortality rate and Life expectancy at birth (1974-2020).  

 

 

 

 

The left panel of Figure 1 shows the mortality 

rate, with the solid line for the total population, 

the dotted line for male, and the dashed line for 

female. It is observed that the ratio remained 

stable during the study period, at around 10% for 

the total population, and the difference between 

mortality according to gender decreases over 

time. In the right panel of Figure 1, life 

expectancy at birth is observed; it can be seen that 

it increased for males, females and therefore for 

the total population. In the case of female, it went 

from 72.6 in 1974 to 82 in 2020.  

 

Unfortunately, the dataset extends only to the 

open age group 80 and over, whereas our interest 

extends to higher ages. Coale and Kisker (1990) 

showed that in populations with good data at old 

ages, mortality rate increases not a constant rate 

with age, as the Gompertz curve assumes, but 

rather at a linearly decreasing rate. We apply the 

method suggested in Coale and Guo (1989) to 

extend our death rate up to age group 105-109. 

 

1. The Lee-Carter model 

Let the random variable 𝑫𝒙𝒕 denote the number of 

deaths in a population at age 𝒙 last birthday during 

calendar year 𝒕. Also let 𝒅𝒙𝒕 denote the observed 

number of deaths, 𝑬𝒙𝒕
𝒄  the central exposed to risk 

at age 𝒙 in year 𝒕, and 𝑬𝒙𝒕
𝟎  the corresponding 

initial exposed to risk. The force of mortality and 

central death rates are denoted by 𝝁𝒙𝒕 and 𝒎𝒙𝒕, 

respectively, with the empirical estimate of the 

latter being �̂�𝒙𝒕 = 𝒅𝒙𝒕/𝑬𝒙𝒕
𝒄 . Under the 

assumption that the force of mortality is constant 

over each year of age and calendar year, i.e., from 

age 𝒙 to age 𝒙 +  𝟏 and year 𝒕 to 𝒕 +  𝟏, then the 

force of mortality 𝝁𝒙𝒕 and the death rate 𝒎𝒙𝒕 

coincide. We assume that this is the case 

throughout. 

All the way through this paper we assume that 

deaths, 𝒅𝒙𝒕, and either central exposures, 𝑬𝒙𝒕
𝒄 , or 

initial exposures, 𝑬𝒙𝒕
𝟎  are available in a 

rectangular array format comprising ages (on the 

rows) 𝒙 =  𝒙𝟏,  𝒙𝟐, . . . , 𝒙𝒌, and calendar years (on 

the columns) 𝒕 =  𝒕𝟏, 𝒕𝟐, . . . , 𝒕𝒏. When only 

central exposures are available and initial 

exposures are required (or vice-versa), one can 

approximate the initial exposures by adding half 

the matching reported numbers of deaths to the 

central exposures, i.e, 𝑬𝒙𝒕
𝟎 ≈ 𝑬𝒙𝒕

𝒄 + 𝒅𝒙𝒕 𝟐⁄ .  

The classical Lee-Carter model (1992) is in 

essence a relational model  

𝐥𝐧 �̂�𝒙𝒕 = 𝒂𝒙 + 𝒃𝒙𝓚𝒕 + 𝜺𝒙𝒕 



173                                                                                   Revista Compendium: Cuadernos de Economía y Administración 

where �̂�𝒙𝒕 denotes the observed force of mortality 

at age x during year t, 𝜺𝒙𝒕 are homoscedastic 

centered error terms, 𝒂𝒙 and 𝒃𝒙 are age-specific 

constants and 𝓚𝒕 is a time-varying index. To 

ensure identifiability of the model, Lee-Carter 

suggest the following set of parameter 

constraints: 

∑ 𝒃𝒙 = 𝟏,

𝒙

           ∑ 𝓚𝒕 = 𝟎

𝒕

 

It is worth mentioning that this model is not a 

simple regression model, since there are no 

observed covariates in the right-hand side. So, the 

authors propose to use singular value 

decomposition (SVD) to estimate the parameters 

under an ordinary least-squares (OLS). 

According to Alho (2000), the main drawback 

of the OLS estimation via SVD is that the errors 

are assumed to be homoscedastic. This is related 

to the fact that for inference we are actually 

assuming that the errors are normally distributed, 

which is quite unrealistic. The logarithm of the 

observed force of mortality is much more variable 

at older ages than at younger ages because of the 

much smaller absolute number of deaths at older 

ages. Because the number of deaths is a counting 

random variable, according to Brillinger (1986), 

the Poisson assumption appears to be plausible.  

To avoid the problems associated with the 

OLS method and taking into account the above, 

Brouhns et al. (2002) implemented the Lee-Carter 

model assuming a Poisson distribution of the 

number of deaths, 𝑫𝒙𝒕~𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝑬𝒙𝒕
𝒄 𝝁𝒙𝒕) with 

𝔼(𝑫𝒙𝒕/𝑬𝒙𝒕
𝒄 ) = 𝝁𝒙𝒕. Then the Lee-Carter model 

become 

𝐥𝐧 𝔼 (
𝑫𝒙𝒕

𝑬𝒙𝒕
𝒄 ) = 𝒂𝒙 + 𝒃𝒙𝓚𝒕 

The vector 𝒂𝒙 can be interpreted as an average age 

profile of mortality. The 𝒃𝒙 profile tells us which 

rates decline rapidly and which rate decline 

slowly in response to chance in 𝓚𝒕. In principle 

𝒃𝒙 could be negative for some ages, indicating 

that mortality at those ages trends to rise when 

falling at other ages; in practice this does not seem 

to occur over the long run. When 𝓚𝒕 is linear in 

time, mortality at each age changes at its own 

constant exponential rate. As 𝓚𝒕 goes to negative 

infinity, each age-specific rate goes to 0; negative 

death rates cannot occur in this model, which is 

an advantage for forecasting. 

In order to project mortality, the time-varying 

index 𝓚𝒕 is viewed as a stochastic process. Box–

Jenkins techniques (see Box. et al. 2015) are then 

used to modeled and forecasted 𝓚𝒕 within an 

ARIMA time series model. 

1. Empirical Results  

In this section, we will show the main results of 

the implementation of the Lee-Carter model on 

historical mortality data from Uruguay. The data 

set was made up of 6 matrices, each one has 47 

columns, representing a year, from 1974 to 2020, 

while the 17 rows represent the age groups, from 

0-4 years to 80 years or more. Three matrices 

represent the total deaths, male and female. The 

rest represent the population at mid-year.  

 

Parameter estimates of the Lee-Carter model can 

be obtained by maximizing the log-likelihood. In 

the mortality literature, maximization of the log-

likelihood is typically performed using the 

Newton-Raphson iterative procedure tailored for 

each model (see, e.g., Brouhns et al. (2002) and 

Cairns et al (2009)). Nonetheless, as discussed by 

Currie (2016), many stochastic mortality models, 

like Lee-Carter, are examples of generalized 

linear models or generalized non-linear model, 

which facilitates their fitting using standard 

statistical software. We will use the R software 

through the StMoMo package. The results for the 

female population are presented below. 
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Figure 2 

Lee-Carter 𝓚 for 1974 to 2020 and log mortality rate fit for 1974 and 2020. 

 

The left panel of Figure 2 shows the Lee-

Carter estimates of 𝒦𝑡. As shown, 𝒦𝑡 decreases 

approximately linearly between 1974 and 2020, 

which is consistent with the pattern of change in 

life expectancy shown in the right panel of Figure 

1. The right panel of Figure 2 shows how well the 

model fits Uruguayan mortality in 1974 and 2020, 

the two extremes of the range, showing the 

familiar shape of mortality by age and larger 

relative declines at younger ages. The estimates of 

𝑎𝑥 and 𝑏𝑥 are given in Table 1. These can be used 

with forecasts of 𝒦𝑡 to construct age specific 

death rates.   

TABLE 1 

Lee-Carter fitted values for 𝑎 and 𝑏. 

Age group 𝑎𝑥 𝑏𝑥 

0-04 -5,67335 0,20253 

05-09 -8,42645 0,08783 

10-14 -8,35273 0,06818 

15-19 -7,71631 0,04761 

20-24 -7,57490 0,04083 

25-29 -7,38086 0,05148 

30-34 -7,03324 0,03452 

35-39 -6,66295 0,04931 

40-44 -6,26092 0,04203 

45-49 -5,84729 0,04514 

50-54 -5,42471 0,04305 

55-59 -5,03306 0,03752 

60-64 -4,61638 0,04035 

65-69 -4,18129 0,05022 

70-74  -3,69166 0,05979 

75-79 -3,17022 0,06217 

80+ -2,28404 0,03744 

 

After adjusting the Lee-Carter model, we are 

now ready to move to the problem of forecasting. 

The first step is to find an appropriate ARIMA 

time series model for the mortality index 𝒦𝑡. We 

found that a random walk with drift describes 𝒦𝑡 

well. So, our forecast model with standard error 

in parentheses, is as follows: 

𝒦𝑡 = −0,2274(0,0895) + 𝒦𝑡−1 + 𝜀𝑡 

where 𝜎𝒦
2 = 0,3768 and 𝑅2 = 0.987. The 

constant term, −0,2274 indicates the average 

annual change in 𝒦, which drives the forecasts of 

long-run change in mortality. Over 30-year 

horizon, we will forecast a decline in 𝒦 of 30 

times 0,2274, or 6,822. The standard error (𝜎𝒦) 

indicates the uncertainty associated with a one-

year forecast, as the forecast horizon increases, 

the standard error grows with the horizon’s square 

root. Figure 3 plot the past values of K along with 

the forecasts based on the time series and the 

associated 80% and 95% confidence intervals.  
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FIGURE 3  

Lee-Carter 𝒦 forecast to 2050 with 80% and 95% confidence band. 

 

 

TABLE 3 

 Forecasts the Female Age-Specific death rates per 100.000 at five-year intervals (2025-2050). 

Age group 2025 2030 2035 2040 2045 2050 

0-04 103 81 65 51 41 32 

05-09 13 12 11 10 9 8 

10-14 16 15 13 12 12 11 

15-19 34 32 30 29 27 26 

20-24 40 38 37 35 33 32 

25-29 46 43 41 38 36 34 

30-34 72 69 66 64 61 59 

35-39 95 90 85 80 76 72 

40-44 149 142 135 129 123 117 

45-49 221 210 199 189 180 171 

50-54 341 325 309 294 280 267 

55-59 521 499 478 458 439 421 

60-64 777 742 709 677 647 618 

65-69 1.132 1.069 1.010 954 901 851 

70-74  1.745 1.630 1.523 1.423 1.329 1.242 

75-79 2.897 2.700 2.515 2.344 2.184 2.035 

80-84 4.812 4.471 4.155 3.861 3.588 3.334 

85-89 7.991 7.406 6.863 6.360 5.894 5.463 

90-94 13.271 12.266 11.336 10.478 9.684 8.950 

95-99 22.039 20.315 18.725 17.260 15.909 14.664 

100-104 36.602 33.646 30.930 28.432 26.137 24.026 

105-109 60.785 55.726 51.089 46.837 42.939 39.366 
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Table 3 contains forecasts of all the five years 

death rates for 2025 and every five years 

thereafter through 2050. Infant mortality rates are 

forecast to fall to less than one per thousand. From 

the forecasts of death rates, it is straight forward 

to calculate life tables and life expectancy at birth. 

Table 4 contains forecasts of 𝑙𝑥 (proportions 

surviving from birth to exact age x) for five-year 

age group as in Table 3. In 2020, around 34.6% of 

births survive to age 90. We estimate that by 2030, 

the value will increase to 37.4%, then by 2040 it 

will rise to 42,6% and by 2050 47,6% will survive 

to age 90. Figure 5 shows life expectancy at birth 

for women from 1974 to 2020 and its forecast 

until 2050. An increase in life expectancy at birth 

of a little more than four years is forecast for the 

next 30 years, that is, life expectancy at birth will 

go from 82 years in 2020 to 86.2 years in 2050. 

 

 

TABLE 4 

Forecasts of number surviving to exact ages out of 100.000 births at five-year intervals 2025-2050, for 

female.  

Age group 2025 2030 2035 2040 2045 2050 

0 100.000 100.000 100.000 100.000 100.000 100.000 

5 99.489 99.594 99.677 99.744 99.796 99.838 

10 99.425 99.536 99.624 99.696 99.753 99.799 

15 99.347 99.463 99.557 99.634 99.695 99.746 

20 99.181 99.306 99.408 99.492 99.561 99.618 

25 98.981 99.115 99.226 99.318 99.395 99.459 

30 98.755 98.901 99.024 99.127 99.215 99.290 

35 98.401 98.560 98.696 98.811 98.911 98.997 

40 97.934 98.118 98.277 98.415 98.535 98.642 

45 97.209 97.426 97.616 97.783 97.933 98.066 

50 96.143 96.410 96.649 96.863 97.057 97.233 

55 94.519 94.859 95.167 95.449 95.707 95.945 

60 92.088 92.520 92.917 93.285 93.627 93.946 

65 88.578 89.148 89.681 90.179 90.647 91.088 

70 83.702 84.506 85.264 85.978 86.654 87.293 

75 76.705 77.889 79.009 80.072 81.079 82.036 

80 66.344 68.039 69.660 71.207 72.684 74.093 

85 52.096 54.357 56.550 58.671 60.718 62.692 

90 34.747 37.374 39.986 42.572 45.122 47.626 

95 17.434 19.832 22.326 24.899 27.532 30.210 

100 5.047 6.473 8.088 9.888 11.864 14.002 

105 224 558 1.034 1.672 2.487 3.493 

110 0 0 0 0 0 0 
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Figure 4 

Actual life expectancy at birth (1974-2020) and forecasts (2021-2050). 

 

 

DISCUSSION 

The world population is experiencing an 

aging process, which is reflected in the increase in 

life expectancy at birth. This increase in life 

expectancy, while a sign of social progress, poses 

several challenges for actuaries. For annuities and 

defined benefit pension plans, increasing 

longevity can lead to low-frequency, high-

severity losses. These challenges require close 

and continuous monitoring to ensure the stability 

of the entities they insure, which is why their 

adequate measurement is critical in determining 

the accounting, financial and solvency situation of 

the insurance entities. 

There is a large literature on human mortality 

modelling. The Lee-Carter Model is one of the 

most popular methodologies for forecasting 

mortality rates. The original Lee–Carter method 

was used to US data. In addition, the model has 

been used successfully in other countries, 

including Canada (Lee & Nault, 1993), Japan 

(Wilmoth, 1996), Chile (Lee & Rofman, 1994), 

Belgian (Brouhns & Denuit, 2001) and Argentina 

(Andreozzi et. al., 2011) among others. 

As already mentioned, the Lee-Carter model 

is not a simple regression model, since no 

covariates are observed on the right side. To 

ensure the identifiability of the model, Lee-Carter 

propose a set of restrictions for the parameters. To 

achieve a better fit of the model parameters, we 

followed the suggestions made by Brouhns et al. 

(2002) and we assume a Poisson distribution for 

the number of deaths. This is a better choice than 

the normal distribution for two reasons: the 

number of deaths is a counting random variable 

and the logarithm of the observed force of 

mortality is much more variable at older ages than 

at younger ages. 

An important aspect of Lee–Carter 

methodology is that the time factor 𝒦𝑡 is 

intrinsically viewed as a stochastic process. Box–

Jenkins techniques are then used to estimate and 

forecast 𝒦𝑡 within an ARIMA times series model. 

These forecasts in turn yield projected age-

specific mortality rates and life expectancies. It 

should be noted that the Lee–Carter method does 

not attempt to incorporate assumptions about 

advances in medical science or specific 

environmental changes; no information other than 

previous history is taken into account. This means 

that this approach is unable to forecast sudden 

improvements in mortality due to the discovery of 

new medical treatments. Similarly, future 

deteriorations caused by epidemics, like COVID-

19, cannot enter the model. 

CONCLUSION 

This paper describes the application of the 

Lee-Carter model to age-specific death rates by 

gender in Uruguay. These rates are available for 

the period that goes from 1974 to 2020. In this 

period, we observed that the mortality rate 

remained relatively stable at around 10%. At the 

same time, we note that the composition by age 

groups varies considerably in some ages, for 
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example, a decrease in infants. This variation in 

the mortality rate causes an increase in life 

expectancy at birth of approximately 10 years, in 

the period 1974-2020. 

We estimated the Lee-Carter parameters by 

maximum log-likelihood. The vector 𝑎𝑥 can be 

interpreted as an average age profile of mortality, 

the vector tracks mortality changes over time, and 

the vector 𝑏𝑥 determines how much each age 

group changes when 𝒦𝑡 changes. We fund that 

the time trend parameter 𝒦𝑡, is essentially lineal 

in all the period. We use standard statistical 

methods to model and forecast the index of 

mortality as a random walk with drift, which 

implies that each age group’s mortality continues 

to decline at its own age-specific exponential rate. 

From the forecasts of rates, we construct forecasts 

of life expectancy. We anticipate that it will rise 

by about 4.2 years to 86.2 in the year 2050. 

Finally, a possible extension of this research 

is to consider more complex models, for example, 

those referred to in the literature as stochastic 

mortality models. This includes the extensions of 

the Lee-Carter proposed in Renshaw and 

Haberman (2003, 2006), the original CBD model, 

and the extended CBD models of Cairns et al. 

(2009). In addition, all the model structures 

considered in Haberman and Renshaw (2011), 

Lovász (2011) and van Berkum et al. (2014), as 

well as the models of Plat (2009), Aro and 

Pennanen (2011), O’Hare and Li (2012), Borger 

et al. (2013) and Alai and Sherris (2014). 
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