PRINCIPIOS DE MECANICA NEWTONIANA PARTE CUARTA

Sánchez Hernando

Resumen: Este escrito forma parte de la monografía Princípios de la Mecánica Newtoniana que en este caso corresponde a la cuarta sección. Se revisan algunas características que hay que tomar en cuenta al usar sistemas referenciales no inerciales, mostrando a su vez efectos que se observan en ejemplos cotidianos. Además, comenzamos el análisis de las influencias energéticas en el movimiento con una descripción lo suficientemente rigurosa pero lo más amigable con el lector para poder llegar a más interesados en estos temas como son maestros, técnicos o científicos.

Palabras Claves: - Mecánica, Movimiento, Energía, Inercial, Fuerza Inercial

Abstract: This paper is part of the monograph principles of Newtonian mechanics, which in this case corresponds to the fourth section. We review some features to be considered when using non-inertial reference systems, showing at the same time effects that are observed in everyday examples. In addition, begin rigorous enough analysis of the energetic influences on the movement with a description but friendlier to the reader to be able to reach more interested in these themes such as teachers, technical or scientific.

Keywords: Mechanical, motion, energy, inertial, inertial force.

Recibido: Marzo 2017
Aceptado: Septiembre 2017

INTRODUCCIÓN

Los avances que ha tenido la humanidad se deben al dominio que ha hecho el hombre de las leyes de la naturaleza. Los pueblos más desarrollados son los que han logrado primero el manejo del conocimiento. La Física como ciencia de la naturaleza tiene como misión la de extraer cada vez más esos detalles que contiene la naturaleza y que podemos usar en provecho para el desarrollo de los pueblos.

A través de este texto no pretendemos presentar ningún descubrimiento, pero sí contribuir a que las juventudes se motiven en el estudio de esta ciencia tan importante para los pueblos y que su dominio puede redundar en mejoras en el nivel de vida de los pueblos.

Queremos presentar al estudiante y al profesor de Física un enfoque, resultado de los años dedicados a enseñar Física a los estudiantes de la ESPOL. Estos años nos han mostrado que para enseñar Física hay que tener un buen conocimiento de ella, que la enseñanza no se quede en un reconocimiento de lo brillante que es la naturaleza, sino en entender el porque es así la naturaleza. Si la entendemos vemos a poder usar sus leyes en nuestro beneficio.

El material que queremos presentar tiene que ver con conceptos desarrollados en el siglo XVII y que actualmente tienen plena vigencia tanto para ingenieros o técnicos como para personas de áreas que necesiten un conocimiento formal del movimiento de cuerpos materiales. Por ejemplo podría ser de utilidad a un médico que estudie el movimiento de articulaciones, fluidos en el cuerpo humano o para un agrónomo que estudie el movimiento de fertilizantes en el suelo.

Además quisiéramos que el profesor de universidad o de colegio tenga una herramienta que con la suficiente rigidez matemática explique y respalde los conocimientos que imparta en el aula de clase.

Trataremos de la matemática necesaria que la explicación sea desarrollada paralelamente en la medida de la necesidad.

6. MOVIMIENTO EN SISTEMAS NO INERCIALES

6.1 Observadores No Inerciales. - Ya hemos anotado que la correspondencia entre fuerza y cambio de la cantidad de movimiento se verifica solo en sistemas inerciales y habíamos puesto unos ejemplos en la sección 5.4.

Graf 6.1
Pelota en bus acelerado

Si miramos la pelota que reposa en el piso de un bus que acelera, notaremos desde el bus, que la pelota sufre una aceleración hacia atrás que no se corresponde a ninguna fuerza.

Hemos usado la notación con subíndice para distinguir entre el objeto y la referencia. La aceleración \(\dddot{a}_{B/T} \) corresponde a la aceleración
del bus con respecto a un observador en la Tierra.
La aceleración \(\ddot{z}_{P/B} \) corresponde a la aceleración de la pelota con respecto a un observador en el bus. La pelota siente aceleración y no hay fuerza. Esto permite calificar al bus como referencia no inercial.

Puede suceder lo contrario, haber fuerza y no hay aceleración. Vemos una pista que está rotando y mantiene un paquete en reposo sujeto por medio de una cuerda del centro de la pista.

Para la pista, el paquete está en reposo. Pero podemos notar que existe una fuerza neta sobre el paquete, dirigida hacia el centro que no está produciendo ninguna aceleración con respecto a la pista. Concluimos entonces que también esta pista no es inercial.

En estos dos casos no podríamos escribir las Leyes de la Mecánica.

Pero si observamos estos movimientos desde la Tierra, encontramos una correspondencia entre las fuerzas y los cambios de cantidad de movimiento. En el caso de la pelota en el bus, visto desde la Tierra notamos que la pelota conserva su cantidad de movimiento porque no siente ninguna fuerza horizontal y lo que hace la pelota es tratar de mantener el movimiento que llevaba y es por esto que se queda del bus que acelera. De aquí podemos inferir que el problema era el observador, el bus no es inercial por tener movimiento acelerado con respecto a la Tierra. Pero desde la Tierra, en ausencia de fuerzas no puede cambiar su cantidad de movimiento, por lo que la Tierra resulta ser Inercial.

Lo mismo en el caso de la pista que rota, el paquete siente fuerza, pero desde la pista no apreciamos aceleración. Pero si miramos el paquete desde la Tierra se puede notar que el paquete con la pista tiene movimiento circular, es decir tiene aceleración centrípeta que es justificada por la fuerza de tensión de la cuerda sobre el paquete.

 Pareciera que la Tierra es un buen sistema de referencia, es Inercial. Pero cuidado. Esto sucede porque desde la Tierra las variaciones por la no inercialidad son pequeñas y no son detectables a simple vista. Ya que la Tierra también es una referencia que rota, primero alrededor de su propio eje y segundo alrededor del Sol. Existen ejemplos donde podemos apreciar que la Tierra también no es un sistema de referencia Inercial.

La rotación de la Tierra alrededor de su propio eje, como la pista, la podemos apreciar cuando el agua que llena el lavamanos sale por el agujero de desagüe. El agua siente una atracción por su peso dirigida hacia abajo pero no existe fuerza central que la haga rotar. Y lo que apreciamos es que cuando el agua desciende también rota, es decir aparece una aceleración centrípeta que no obedece a fuerza alguna.

Estos ejemplos nos inducen a pensar que siempre que el sistema observador está interaccionando con otro tendremos que considerarlo no inercial. Y para encontrar un sistema no inercial tendremos que alejarnos de toda interacción, por ejemplo, una nave que se encuentra lo suficiente lejos de cualquier cuerpo celeste. De lo contrario debemos trabajar con sistemas que aproximadamente son inerciales en la medida que no influyan o influyan lo menos posibles los efectos de la no inercialidad del sistema.

Vamos a tratar de analizar algunos efectos de la no inercialidad de los sistemas de observación a la luz de la Mecánica clásica.

6.2 Transformaciones de Galileo. — En el caso de presentarse un observador no inercial tuvimos que recurrir a otro sistema donde se pueda explicar la no inercialidad del sistema, por lo que sería necesario establecer las reglas que nos permitan comunicar las observaciones de dos observadores distintos.

Dentro de los límites de la mecánica clásica lo primero que vamos a considerar como un postulado universal es que el tiempo es una cantidad absoluta y que no depende del observador. Este postulado es factible para cuerpos que se mueven a velocidades pequeñas comparadas con la velocidad de la luz. Es decir, en los límites de la Mecánica Clásica:

\[
\dot{t}_{P/A} = \dot{t}_{P/B} \quad (6.1)
\]

De igual manera postularemos que la masa de los cuerpos no depende del observador, de igual manera para objetos que no se mueven con velocidades muy grandes:

\[
m_{P/A} = m_{P/B} = m \quad (6.2)
\]

Entonces las características cinemáticas de los cuerpos asumiremos relacionadas con las ecuaciones conocidas como Transformaciones de Galileo y serán las que nos permiten comunicar las observaciones de dos puntos de vista distintos.
Por lo que el paquete presenta para el observador en Tierra una aceleración igual a la de la pista.

6.3 Principio de Relatividad de Galileo. – Con estas bases y considerando que nos mantenemos dentro de los límites de la Mecánica Clásica estableceremos el siguiente principio: Las Leyes de la Mecánica son las mismas para cualquier observador inercial.

Dos sistemas de referencia en movimiento relativo de traslación rectilínea uniforme son equivalentes desde el punto de vista mecánico; es decir, los experimentos mecánicos se desarrollan de igual manera en ambos, y las leyes de la mecánica son las mismas.

Si revisamos las implicaciones de este principio en las transformaciones de Galileo (6.3) notaremos que, si A es un observador inercial, para que B también lo sea se necesita que no exista aceleración relativa entre los observadores. Si un observador experimenta aceleración con respecto a un observador inercial el movimiento fluye de manera diferente en ambos sistemas de referencia.

6.4 Sistemas no inerciales en traslación. – Vamos a asumir en las relaciones 6.3 que A es un observador inercial, mientras B se acelera según A con una aceleración $\ddot{a}_{B/A} \neq 0$.

Entonces, para un cuerpo P que se encuentra en movimiento, según A (A es inercial) su aceleración es proporcional a la fuerza neta que actúa sobre el cuerpo, mientras que el observador B no puede decir lo mismo:

$$\ddot{a}_P/A = \ddot{a}_{P/B} + \ddot{a}_{B/A} \rightarrow \frac{\ddot{F}}{m} = \ddot{a}_{P/B} + \ddot{a}_{B/A}$$

Para el observador B entonces:

$$m\ddot{a}_{P/B} = \ddot{F} - m\ddot{a}_{B/A} \quad (6.6)$$

El cambio de movimiento es igual a la fuerza neta más un término que tiene unidades de fuerza, pero no es una fuerza como las establecidas anteriormente como la medida de una interacción. Este término que aparece porque B no es inercial lo trataremos como una seudofuerza que algunos autores la denominan “fuerza inercial”. Es un término que actúa como...
una fuerza sobre el cuerpo P, en magnitud igual a la masa del cuerpo multiplicada por la aceleración del sistema referencial (B) con respecto a un observador Inercial (A) y orientada en contra de esta aceleración. Como ejemplo observemos un camión plataforma que transporta un paquete B en su parte posterior, mientras el camión acelera con respecto a la Tierra.

![Diagrama 6.5 Fuerzas sobre el paquete.](image)

Este paquete está sometido a una fuerza de presión (N) con la plataforma, la fuerza peso (mg) con la Tierra, una fuerza de fricción (f) con la plataforma. Si consideramos a la Tierra inercial entonces la plataforma será una referencia no inercial el momento que la aceleración $\ddot{a}_{c/T}$ del camión con respecto a la Tierra sea diferente de cero. Como la Tierra la consideramos inercial entonces podemos escribir la segunda ley de Newton:

$$\begin{align*}
N - mg &= 0 \\
f &= ma_{P/T}
\end{align*} \quad (6.7)$$

Si quisieramos resolver este problema según un observador en el camión entonces debería aparecer la “fuerza inercial”, opuesta a la aceleración $\ddot{a}_{c/T}$ del camión con respecto a la Tierra, en las ecuaciones:

$$\begin{align*}
N - mg &= 0 \\
f - F_i &= ma_{P/c}
\end{align*} \quad (6.8)$$

Si usamos el valor de la “fuerza inercial” $F_i = ma_{c/T}$ y las relaciones para la aceleración de las Transformaciones de Galileo podemos notar que ahora ambos puntos de vista nos dan igual resultado.

6.4 Sistemas no inerciales en rotación. – Otro ejemplo muy útil de sistemas referenciales no inerciales es el sistema que está en rotación, debido a que existen muchos sistemas rotando y en especial nuestro planeta es un sistema en rotación.

Para el caso bidimensional que planteábamos en el gráfico 6.2, donde un paquete se mantiene unido a una plataforma por medio de una cuerda que lo sujeta del centro de la plataforma, es suficiente usar coordenadas polares.

Tomemos un sistema B que está rotando uniformemente con respecto al sistema A que suponemos inercial.

Las transformaciones de Galileo para las aceleraciones nos permiten escribir la relación entre ambas observaciones:

$$\begin{align*}
\rho_{P/A} &= \rho_{P/B} = \rho \\
\varphi_{P/A} &= \varphi_{P/B} + \varphi_{B/A} \equiv \varphi = \varphi' + \omega t
\end{align*} \quad (6.9)$$

Hemos simplificado la notación y además hemos supuesto que el sistema B rota con respecto de A con velocidad angular $\omega = \text{const.}$

Usando la relación 4.14 para la aceleración en coordenadas polares y las transformaciones 6.7 obtenemos:

$$\ddot{a}_{P/A} = \left(\frac{d^2r}{dt^2} - r \left(\frac{d\varphi'}{dt} + \omega \right)^2 \right) \hat{e}_r +$$

![Diagrama 6.7 Movimiento en plano rotante.](image)
De manera que un cuerpo en el sistema B que está rotando, a más de las fuerzas reales sentirá una aceleración producida una “fuerza inercial”: \(\vec{F}_i = -m \ddot{a}_{B/A} \).

En el caso que planteamos donde el paquete P descansa sobre una plataforma que gira entonces \(\ddot{a}_{P/B} = 0 \), y por lo tanto al escribir la ley de movimiento para este paquete escribiríamos:

\[
m \ddot{a}_{P/B} = \vec{F}_i - m \ddot{a}_{B/A} = 0
\]

Y es por esto que la tensión de la cuerda se anula con la “fuerza inercial” dando como resultado una aceleración nula.

La “fuerza inercial” la expresaremos como:

\[
\vec{F}_i = -m \ddot{a}_{B/A} = m \rho \omega^2 \dot{e}_{r} + 2 \omega \dot{r} \cdot \dot{\omega} \dot{e}_{\phi} + \dot{\phi} \dot{\omega} \dot{e}_{\phi}.
\]

Podemos notar que la primera componente se orienta radialmente hacia afuera, por esto algunos la llaman fuerza centrífuga y la siente cualquier cuerpo en un sistema rotante (Graf. 6.7 a). La segunda componente se presenta cuando el cuerpo se mueve respecto de B y es conocida como fuerza de Coriolis. En el (Graf. 6.7 b) tenemos una pelota lanzada desde el centro hacia afuera en una plataforma estática y la trayectoria observada es radial vista desde la Tierra y desde la plataforma. Pero en el graf. 6.7 c) la plataforma rota por lo que la pelota no avanza por el diámetro cuando se la mira desde la plataforma, sino que curva su trayectoria. Desde la Tierra sigue siendo radial.

En el caso tridimensional, por ejemplo, el movimiento sobre la Tierra, tomando en cuenta que ella gira sobre su propio eje a razón de una vuelta cada día, su comportamiento es similar. Se puede analizar el movimiento de cuerpos sobre la Tierra usando coordenadas cilíndricas, que son una prolongación de las coordenadas polares con un eje perpendicular al plano de rotación que no se mueve.

La aceleración de un objeto en la Tierra, con respecto a un observador inercial (A), que no rote, está dada por la expresión 4.20. Usando transformaciones de Galileo similares a las 6.9 tendríamos:

\[
\begin{align*}
\rho_{P/A} &= \rho_{P/B} = \rho \\
\varphi_{P/A} &= \varphi_{P/B} + \varphi = \varphi' + \omega t
\end{align*}
\]

Dónde:

\[
\omega = \frac{2 \pi}{24(3600)} = 7.27 \times 10^{-5} \text{ rad/s}
\]

Para la “fuerza inercial” según 6.13 la expresión será:

\[
\vec{F}_i = -m \ddot{a}_{B/A} = m \rho \omega^2 \dot{e}_r +
\]

\[
+ 2 \omega \dot{r} \cdot \dot{\omega} \dot{e}_\phi + \dot{\phi} \dot{\omega} \dot{e}_\phi
\]

Se presenta la “fuerza” centrífuga y la “fuerza” de Coriolis. Si evaluamos el valor de la aceleración centrífuga con \(\rho = R_T \cos \delta \) donde \(R_T = 6.38 \times 10^6 \text{ m} \) es la latitud del lugar obtenemos los siguientes valores para algunas localidades:

<table>
<thead>
<tr>
<th>Tabla 6.1</th>
<th>Variaciones de la ac. centrífuga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lugar</td>
<td>Latitud</td>
</tr>
<tr>
<td>Ecuador</td>
<td>0</td>
</tr>
<tr>
<td>Panamá</td>
<td>9</td>
</tr>
<tr>
<td>Jamaica</td>
<td>18</td>
</tr>
<tr>
<td>Bermudas</td>
<td>32</td>
</tr>
<tr>
<td>Cambridge</td>
<td>42</td>
</tr>
<tr>
<td>Groenlandia</td>
<td>70</td>
</tr>
</tbody>
</table>

Estos valores harán que la gravedad medida en la Tierra en estos lugares sea menor al valor de 9.83 m/s² medida en los polos y más pequeña mientras más nos acercamos a la línea ecuatorial.
En el gráfico 6.8 se muestra foto de la NASA tomada a un huracán sobre el pacífico donde podemos apreciar el movimiento circular producido por la aceleración de Coriolis cuando masas de aire, por influencia térmica han producido una baja de presión en un sector de la atmósfera que tiende a compensarse, pero no como lo harían las partículas de aire para un observador inercial (movimiento dirigido hacia el centro de baja presión) sino que con una aceleración lateral justificada por la aceleración de Coriolis que se debe al movimiento acelerado de la Tierra.

7. ENERGÍA Y MOVIMIENTO

7.1 Definición de energía. - Ya en 5.1 se estableció la necesidad de medir una cantidad que poseen los cuerpos y que puede transferirse de un cuerpo a otro en las interacciones y lo llamábamos cantidad de movimiento. La forma de intercambio se discutirá más tarde. Esta característica es vectorial y por lo tanto su análisis es más complicado que una cantidad de tipo escalar.

Históricamente se ha establecido otra cantidad, del tipo escalar que también aparece en las interacciones y que se transfiere de un cuerpo a otro. Esta cantidad la denominaremos energía.

Asociaremos con el concepto de energía esa capacidad que posee un cuerpo de producir transformaciones en los cuerpos con los que interacciona.

Desde este punto de vista diremos que un cuerpo posee energía por dos motivos: por el movimiento que posee o por la posición en la que se encuentra. Entonces habrá energías de movimiento y energías de posición.

En el gráfico 7.1 mostramos como el viento por su movimiento es capaz de mover las aspas de un molino de viento, mientras una piedra por su posición es capaz de producir cambios en objetos debajo de la pendiente.

7.2 Energías de posición. - Este tipo de energías se miden con funciones de posición, es decir, un cuerpo en cada posición toma un solo valor de energía. Las variaciones que pueda tomar la energía del cuerpo corresponderán a variaciones de su posición. Aunque pueden existir en una variación de posición diferentes variaciones de la energía dependiendo del tipo de interacción. Interacciones muy fuertes producirán mayores cambios en la energía en la misma diferencia de posición. Por lo que debe haber alguna relación entre la medida de la energía de posición y la intensidad de la interacción.

Tomando en cuenta esto, estableceremos la función que mida la energía en diferentes posiciones en relación con la intensidad de la interacción o su medida que hemos denominado fuerza. A mayor fuerza, más intensa es la interacción y por lo tanto mayor variación tendrá la energía en un cambio de posición.

La definición matemática tiene la siguiente expresión:

$$-\frac{dU}{dt} = \vec{F}$$ \hspace{1cm} (7.1)

La función $U(\vec{F})$ es la medida de la energía de posición y por lo tanto función de la posición del cuerpo. El cambio en la energía dU en un cambio de posición $d\vec{x}$ es proporcional a la fuerza, observando que la fuerza apunta en contra de la dirección en que la energía crece, es por esto el signo menos en la definición 7.1.

Una explicación de lo que sucede en esta definición la podemos apreciar cuando un cuerpo cerca de la Tierra se desplaza. Si en un desplazamiento unitario de 1 cm la energía cambia en un valor grande, significa que la interacción es muy fuerte, hay una fuerza muy
intensa actuando. Además, si la fuerza apunta hacia el centro de la Tierra quiere decir que la energía del cuerpo crece cuando nos alejamos de la Tierra.

Otro ejemplo puede ser el movimiento de un electrón cerca de un protón. El electrón sentirá una atracción hacia el protón que me indicará que la función \(U(\vec{r}) \) o la energía de posición del electrón crecerá al alejarse del protón y el cambio de la energía por unidad de desplazamiento es proporcional a la fuerza.

La definición 7.1 establece un tipo especial de derivada que toma en cuenta la dirección en la que se deriva. En los cursos de cálculo se la denomina gradiente y para no complicarnos innecesariamente con la Matemática diremos que tiene el siguiente significado, usando coordenadas rectangulares:

\[
\begin{align*}
\frac{dU}{dx} &= F_x \\
\frac{dU}{dy} &= F_y \\
\frac{dU}{dz} &= F_z
\end{align*}
\] (7.2)

7.2.1 Energía gravitacional cerca de la Tierra - Cuando un cuerpo se encuentra cerca de la Tierra siente la interacción atractiva con la Tierra que se llama peso, aunque es una variante de la interacción gravitacional. Asociada con esta interacción tenemos la energía de posición gravitacional para la que ya habíamos anotado su dependencia con la posición. Para este caso estableceremos la función \(U(\vec{r}) \) que mide la energía que posee un cuerpo por su posición relativa a la Tierra. A las energías de posición llamaremos de aquí en adelante energías potenciales.

Imaginemos un objeto moviéndose cerca de la superficie de la Tierra. La fuerza peso que siente el cuerpo es más o menos constante cuando el movimiento se realiza muy cerca de la Tierra y es proporcional a su masa. De ahí que el modelo que se usa para cuantificar el peso es el producto de la masa por un valor constante que se ha medido para todo cuerpo y que se lo denomina gravedad g. Por lo que el peso diremos es igual a mg el producto de la masa por la gravedad. Si dirección es hacia la Tierra debido a que la interacción gravitacional es atractiva. Entonces la energía del objeto por su posición relativa a la Tierra será medida por una función \(U(y) \) en vista de que la fuerza tiene una sola componente (graf. 7.2).

\[
- \frac{dU}{dy} = -mg \quad (7.3)
\]

Para obtener la función \(U \) de la expresión 7.3 procederemos a anti derivar el lado derecho de la ecuación.

\[
U = mg y + C \quad (7.4)
\]

Como \(m \) y \(g \) estamos considerando constantes la anti derivada es una función lineal más una constante. Para determinar la constante de esta operación necesitamos establecer el lugar desde donde le asignaremos a la función \(U \) el valor de cero. Donde se pone cero a la función \(U \) depende solo de la facilidad que necesitamos para resolver un determinado problema. En este caso que estamos planteando en el grafico 7.2 convendría usar la condición: \(y = 0 \) \(U = 0 \). Que al ser reemplazada en la ecuación 7.4 determina que la constante \(C \) debe ser cero y la función \(U \) quedaría solo:

\[
U = mg y \quad (7.5)
\]

Hagamos algunas observaciones a la última expresión: 1. La condición que se usa para determinar la constante \(C \) se denomina nivel de referencia para la energía potencial. 2. La expresión de la función \(U \) puede cambiar si cambiamos el sistema referencial. 3. La expresión de la función \(U \) puede cambiar si cambia el nivel de referencia usado. 4. Pero ninguno de estas variaciones que puede sufrir la expresión para \(U \) altere el sentido de esta función, que es el de medir como cambia la energía del cuerpo conforme cambia su posición.

7.2.2 Energía potencial elástica - Esta es otra energía que depende de la posición del cuerpo con relación al objeto con quien interactúa. La dependencia de la posición es variada. Analizaremos un modelo sencillo para la
interacción elástica que obedece a lo que se conoce en la literatura como Ley de Hook. Este es modelo lineal que establece una dependencia lineal entre la fuerza y la deformación elástica.

7.2.3 Energía potencial gravitacional cerca de un cuerpo celeste. - Cuando un objeto se mueve cerca de un planeta o una estrella siente la interacción gravitacional que obedece a la de Gravitación formulada por Newton y que establece que la fuerza de interacción es proporcional al producto de las masas de los cuerpos que interactúan e inversamente proporcional a la distancia que los separa.

\[F = G \frac{mM}{r^2} \quad (7.9) \]

Analicemos la energía de un cuerpo de masa \(m \) que se encuentra en las cercanías de un planeta de masa \(M \), siendo \(r \) la distancia que separa sus centros. En cualquier posición \(m \) sentirá una fuerza orientada hacia el centro de \(M \), por lo que sería mejor usar coordenadas esféricas debido a la simetría central de esta fuerza.

La fuerza sobre la masa \(m \) tiene dirección radial en todo momento y apuntando al centro por lo que del gradiente de la definición 7.1 solo nos queda su componente radial \(U(r) \) (véase [6]):

\[\vec{F} = -G \frac{mM}{r^2} \hat{r} = -\frac{dU}{dr} \hat{r} \]

\[G \frac{mM}{r^2} = \frac{dU}{dr} \quad (7.10) \]

Al anti derivar la expresión 7.10 se obtiene \(U(r) \) con una constante.

\[U(r) = -G \frac{mM}{r} + C \quad (7.11) \]

Para este caso se acostumbra a escoger un nivel de referencia que facilite la expresión para \(U \) y por eso se pone: \(U = 0 \quad r = \infty \). Al reemplazar estos valores en 7.11 encontramos que \(C \) debe ser cero:

\[U(r) = -G \frac{mM}{r} \quad (7.12) \]

7.2.4 Cambios de energía potencial. – El valor de la energía potencial no tiene mucha importancia, porque su valor es relativo y depende de donde pongamos la referencia. Pero en cambio la variación de la energía potencial si es importante en Mecánica porque ella está relacionada con los procesos en los que interviene el cuerpo en estudio. Por ejemplo, si movemos un objeto de un punto de menos energía a un punto de mayor energía veremos que se incrementa su energía. Pero como la energía es una cantidad que en principio no cambia para un sistema cerrado, esto es alguien
del sistema debe estar disminuyendo su energía o está entregando energía al objeto de estudio. Decimos que cuando levantamos un cuerpo de la superficie terrestre, gastamos la energía de nuestros músculos, mientras el cuerpo que es alzado incrementa su energía en una cantidad igual.

De hecho, si usamos la expresión 7.1 y despejamos dU estaremos en capacidad de calcular los cambios de energía a partir de la fuerza de posición relacionada.

\[dU = -\mathbf{F} \cdot d\mathbf{r} \quad (7.13) \]

El único problema es que este cambio es diferencial y no me da valores que yo pueda medir. Pero si podríamos sumar los valores de \(dU \) que corresponden a un tramo de la trayectoria si aprendemos a sumar diferenciales, que haremos en el siguiente ítem.

Graf. 7.4
Energía potencial gravitacional.

\[\Delta U = \sum dU = \sum -\mathbf{F} \cdot d\mathbf{r} \quad (7.14) \]

Pero hay que notar que si la fuerza depende de la posición la función U tomará un valor para cada posición del cuerpo sin importar la manera como llegó el cuerpo a esa posición. Esto nos permitirá calcular de la suma 7.14 si conocemos los valores de U para cada posición. El resultado solo dependerá del valor anterior y del valor posterior. Y si la trayectoria es tal que el cuerpo regresa a la posición anterior, el último y el primer valor coinciden dando un cambio neto de cero.

CONCLUSIONES

Las reflexiones contenidas en este artículo nos permiten contrastar las apreciaciones de diferentes observadores sobre el movimiento. Presentamos que hay ciertos observadores para los cuales las leyes de Newton son aplicables directamente mientras que otros observadores necesitan un replanteo de las ecuaciones para que sus observaciones estén acordes con la realidad.

Con esto hemos explicado comportamientos de la naturaleza que pudieren no obedecer lo que Newton dice sin observar las condiciones que se requieren para aplicar las leyes de Newton.

Otro aspecto que hemos alcanzado a tocar es el enfoque energético del movimiento. Destacando de paso que todo lo que está sucediendo es fruto de la energía que posee el universo que si faltare no nos permitiría hacer los procesos imprescindibles para la supervivencia como respirar, producir alimentos, desarrollar máquinas que faciliten el trabajo.
REFERENCIAS BIBLIOGRÁFICAS Y ELECTRÓNICAS

[1]. Física Universitaria V. 1, Sears Zemansky,
Editorial Pearson Educación, México 2013

[2]. Principios matemáticos de la Filosofía Natural,
Isaac Newton, Alianza Editorial, 2011,
ISBN: 9788420651927

[3]. Leithold Louis. El Cálculo. Oxford University
Press. Séptima edición. 1998

[4]. KATZ, Robert. Introducción a la Teoría Especial

[5]. http://earthobservatory.nasa.gov/

[6]. Ecuaniones de la Física Matemática, Tijonov,
Editorial Mir, Moscú 1980.